info prev up next book cdrom email home

Heaviside Step Function

\begin{figure}\begin{center}\BoxedEPSF{Heaviside.epsf scaled 700}\end{center}\end{figure}

A discontinuous ``step'' function, also called the Unit Step, and defined by

\begin{displaymath}
H(x) = \cases{
0 & $x < 0$\cr
{\textstyle{1\over 2}}& $x = 0$\cr
1 & $x > 0$.\cr}
\end{displaymath} (1)

It is related to the Boxcar Function. The Derivative is given by
\begin{displaymath}
{d\over dx} H(x) = \delta(x),
\end{displaymath} (2)

where $\delta(x)$ is the Delta Function, and the step function is related to the Ramp Function $R(x)$ by
\begin{displaymath}
{d\over dx} R(x)=-H(x).
\end{displaymath} (3)


Bracewell (1965) gives many identities, some of which include the following. Letting $*$ denote the Convolution,

\begin{displaymath}
H(x)*f(x) = \int^x_{-\infty} f(x')\,dx'
\end{displaymath} (4)


$\displaystyle H(t)* H(t)$ $\textstyle =$ $\displaystyle \int_{-\infty}^\infty H(u)H(t-u)\,du$ (5)
  $\textstyle =$ $\displaystyle H(0)\int^\infty_0 H(t-u)\,du$  
  $\textstyle =$ $\displaystyle H(0)H(t) \int^t_0\,du= tH(t).$ (6)

Additional identities are
\begin{displaymath}
H(x)H(y) = \cases{
H(x) & $x > y$\cr
H(y) & $x < y$\cr}
\end{displaymath} (7)


$\displaystyle H(ax+b)$ $\textstyle =$ $\displaystyle H\left({x+{b\over a}}\right)H(a)+H\left({-x-{b\over a}}\right)H(-a)$  
  $\textstyle =$ $\displaystyle \left\{\begin{array}{ll} H\left({x + {b\over a}}\right)& \mbox{$a > 0$}\\  H\left({-x -{b\over a}}\right)& \mbox{$a < 0$.}\end{array}\right.$ (8)

The step function obeys the integral identities
$\displaystyle \int^b_{-a} H(u-u_0)f(u)\,du$ $\textstyle =$ $\displaystyle H(u_0) \int^b_{u_0} f(u)\,du$ (9)
$\displaystyle \int^b_{-a} H(u_1-u)f(u)\,du$ $\textstyle =$ $\displaystyle H(u_1) \int^{u_1}_{-a} f(u)\,du$ (10)


\begin{displaymath}
\int^b_{-a} H(u-u_0)H(u_1-u)f(u)\,du = H(u_0)H(u_1)\int^{u_1}_{u_0} f(u)\,du.
\end{displaymath} (11)


The Heaviside step function can be defined by the following limits,

$\displaystyle H(x)$ $\textstyle =$ $\displaystyle \lim_{t\to 0}\left[{{\textstyle{1\over 2}}+ {1\over\pi} \tan^{-1}\left({x\over t}\right)}\right]$ (12)
  $\textstyle =$ $\displaystyle {1\over 2} \lim_{t\to 0} \mathop{\rm erfc}\nolimits \left({-{x\over t}}\right)$ (13)
  $\textstyle =$ $\displaystyle {1\over\sqrt{\pi}} \lim_{t\to 0} \int^\infty_{-x} t^{-1}e^{-u^2/t^2}\,du$ (14)
  $\textstyle =$ $\displaystyle {1\over 2} + {1\over\pi} \lim_{t\to 0} \mathop{\rm si}\nolimits \left({\pi x\over t}\right)$ (15)
  $\textstyle =$ $\displaystyle {1\over\pi} \lim_{t\to 0} \int^x_{-\infty} t^{-1}\mathop{\rm sinc}\nolimits \left({u\over t}\right)\,du$ (16)
  $\textstyle =$ $\displaystyle \lim_{t\to 0} \left\{\begin{array}{ll} {\textstyle{1\over 2}}e^{x...
...$}\\  1-{\textstyle{1\over 2}}e^{-x/t} & \mbox{for $x\geq 0$}\end{array}\right.$ (17)
  $\textstyle =$ $\displaystyle \lim_{t\to 0} \int^x_{-\infty}t^{-1}\Lambda\left({x-{\textstyle{1\over 2}}t\over t}\right)\,dx,$ (18)

where $\mathop{\rm erfc}\nolimits (x)$ is the Erfc function, $\mathop{\rm si}\nolimits (x)$ is the Sine Integral, $\mathop{\rm sinc}\nolimits x$ is the Sinc Function, and $\Lambda(x)$ is the one-argument Triangle Function and


The Fourier Transform of the Heaviside step function is given by

\begin{displaymath}
{\mathcal F}[H(x)] = \int_{-\infty}^\infty e^{-2\pi ikx}H(x)\,dx = {1\over 2}\left[{\delta(k)-{i\over \pi k}}\right],
\end{displaymath} (19)

where $\delta(k)$ is the Delta Function.

See also Boxcar Function, Delta Function, Fourier Transform--Heaviside Step Function, Ramp Function, Ramp Function, Rectangle Function, Square Wave


References

Bracewell, R. The Fourier Transform and Its Applications. New York: McGraw-Hill, 1965.

Spanier, J. and Oldham, K. B. ``The Unit-Step $u(x-a)$ and Related Functions.'' Ch. 8 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 63-69, 1987.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25