A convolution is an integral which expresses the amount of overlap of one function
as it is shifted over another
function
. It therefore ``blends'' one function with another. For example, in
synthesis imaging,
the measured Dirty Map is a convolution of the ``true'' CLEAN Map with the
Dirty Beam (the Fourier Transform of the sampling distribution). The convolution is sometimes also known by
its German name, Faltung (``folding''). A convolution over a finite range
is given
by
![\begin{displaymath}
f(t)*g(t) \equiv \int_0^t f(\tau)g(t-\tau)\,d\tau,
\end{displaymath}](c3_29.gif) |
(1) |
where the symbol
(occasionally also written as
) denotes convolution of
and
. Convolution is more
often taken over an infinite range,
![\begin{displaymath}
f(t)*g(t) \equiv \int_{-\infty}^\infty f(\tau)g(t-\tau)\,d\tau = \int_{-\infty}^\infty g(\tau)f(t-\tau)\,d\tau.
\end{displaymath}](c3_33.gif) |
(2) |
Let
,
, and
be arbitrary functions and
a constant. Convolution has the following properties:
![\begin{displaymath}
f*g = g*f
\end{displaymath}](c3_36.gif) |
(3) |
![\begin{displaymath}
f*(g*h) = (f*g)*h
\end{displaymath}](c3_37.gif) |
(4) |
![\begin{displaymath}
f*(g+h) = (f*g)+(f*h)
\end{displaymath}](c3_38.gif) |
(5) |
![\begin{displaymath}
a(f*g) = (af)*g = f*(ag).
\end{displaymath}](c3_39.gif) |
(6) |
The Integral identity
![\begin{displaymath}
\int^x_a \int^x_a f(t)\,dt\,dx = \int^x_a (x-t)f(t)\,dt
\end{displaymath}](c3_40.gif) |
(7) |
also gives a convolution. Taking the Derivative of a convolution gives
![\begin{displaymath}
{d\over dx} (f*g)={df\over dx}*g = f*{dg\over dx}.
\end{displaymath}](c3_41.gif) |
(8) |
The Area under a convolution is the product of areas under the factors,
The horizontal Centroids add
![\begin{displaymath}
\int_{-\infty}^\infty \left\langle{x(f*g)}\right\rangle{}\, ...
...eft\langle{xf}\right\rangle{}+\left\langle{xg}\right\rangle{},
\end{displaymath}](c3_47.gif) |
(10) |
as do the Variances
![\begin{displaymath}
\int_{-\infty}^\infty \left\langle{x^2(f*g)}\right\rangle{}\...
...langle{x^2f}\right\rangle{}+\left\langle{x^2g}\right\rangle{},
\end{displaymath}](c3_48.gif) |
(11) |
where
![\begin{displaymath}
\left\langle{x^n f}\right\rangle{}\equiv {\int_{-\infty}^\infty x^n f(x)\,dx\over \int_{-\infty}^\infty f(x)\,dx}.
\end{displaymath}](c3_49.gif) |
(12) |
See also Autocorrelation, Convolution Theorem, Cross-Correlation,
Wiener-Khintchine Theorem
References
Convolution
Bracewell, R. ``Convolution.'' Ch. 3 in The Fourier Transform and Its Applications.
New York: McGraw-Hill, pp. 25-50, 1965.
Hirschman, I. I. and Widder, D. V. The Convolution Transform. Princeton, NJ: Princeton University Press, 1955.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York:
McGraw-Hill, pp. 464-465, 1953.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Convolution and Deconvolution Using the FFT.'' §13.1 in
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 531-537, 1992.
© 1996-9 Eric W. Weisstein
1999-05-25