A secondorder Ordinary Differential Equation arising in the study of stellar interiors. It is given by

(1) 

(2) 
It has the Boundary Conditions
Solutions for , 1, 2, 3, and 4 are shown above. The cases , 1, and 5 can be solved analytically
(Chandrasekhar 1967, p. 91); the others must be obtained numerically.
For (
), the LaneEmden Differential Equation is

(5) 
(Chandrasekhar 1967, pp. 9192). Directly solving gives

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
The Boundary Condition then gives and , so

(12) 
and is Parabolic.
For (), the differential equation becomes

(13) 

(14) 
which is the Spherical Bessel Differential Equation

(15) 
with and , so the solution is

(16) 
Applying the Boundary Condition gives

(17) 
where is a Spherical Bessel Function of the First Kind (Chandrasekhar 1967, pp. 92).
For , make Emden's transformation
which reduces the LaneEmden equation to

(20) 
(Chandrasekhar 1967, p. 90). After further manipulation (not reproduced here), the equation becomes

(21) 
and then, finally,

(22) 
References
Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, pp. 84182, 1967.
© 19969 Eric W. Weisstein
19990526