info prev up next book cdrom email home

Riemann Tensor

A Tensor sometimes known as the Riemann-Christoffel Tensor. Let

\tilde D_s\equiv {\partial\over\partial x^s} - \sum_l \left\{{\matrix{s \quad u\cr l\cr}}\right\},
\end{displaymath} (1)

where the quantity inside the $\left\{{\matrix{s\quad u\cr l\cr}}\right\}$ is a Christoffel Symbol of the Second Kind. Then
R_{pqrs} \equiv \tilde D_q\left\{{\matrix{p\quad r\cr s\cr}}\right\} - \tilde D_r\left\{{\matrix{r\quad q\cr s\cr}}\right\}.
\end{displaymath} (2)

Broken down into its simplest decomposition in $N$-D,
$R_{\lambda\mu\nu\kappa}={1\over N-2} (g_{\lambda\nu}R_{\mu\kappa}-g_{\lambda\kappa} R_{\mu\nu}-g_{\mu\nu}R_{\lambda\kappa}+g_{\mu\kappa}R_{\lambda\nu})$
$ - {R\over (N-1)(N-2)} (g_{\lambda\nu}g_{\mu\kappa}-g_{\lambda\kappa}g_{\mu\nu})+ C_{\lambda\mu\nu\kappa}.\quad$ (3)
Here, $R_{\mu\nu}$ is the Ricci Tensor, $R$ is the Curvature Scalar, and $C_{\lambda\mu\nu\kappa}$ is the Weyl Tensor. In terms of the Jacobi Tensor ${J^\mu}_{\nu\alpha\beta}$,
R^\mu{}_{\alpha\nu\beta} = {\textstyle{2\over 3}} (J^\mu_{\nu\alpha\beta}-J^\mu_{\beta\alpha\nu}).
\end{displaymath} (4)

The Riemann tensor is the only tensor that can be constructed from the Metric Tensor and its first and second derivatives,
R^\alpha{}_{\beta\gamma\delta} =\Gamma^\alpha_{\beta\delta,\...
\end{displaymath} (5)

where $\Gamma$ are Connection Coefficients and $c$ are Commutation Coefficients. The number of independent coordinates in $n$-D is
C_n\equiv {\textstyle{1\over 12}}n^2(n^2-1),
\end{displaymath} (6)

and the number of Scalars which can be constructed from $R_{\lambda\mu\nu\kappa}$ and $g_{\mu\nu}$ is
S_n\equiv \cases{
1 & for $n=2$\cr
{\textstyle{1\over 12}} n(n-1)(n-2)(n+3) & for $n=1, n>2$.\cr}
\end{displaymath} (7)

In 1-D, $R_{1111}=0$.

$n$ $C_n$ $S_n$
1 0 0
2 1 1
3 6 3
4 20 14

See also Bianchi Identities, Christoffel Symbol of the Second Kind, Commutation Coefficient, Connection Coefficient, Curvature Scalar, Gaussian Curvature, Jacobi Tensor, Petrov Notation, Ricci Tensor, Weyl Tensor

info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein