info prev up next book cdrom email home

Minkowski Space

A 4-D space with the Minkowski Metric. Alternatively, it can be considered to have a Euclidean Metric, but with its Vectors defined by

\begin{displaymath}
\left[{\matrix{x_0\cr x_1\cr x_2\cr x_3\cr}}\right] = \left[{\matrix{ict\cr x\cr y\cr z\cr}}\right],
\end{displaymath} (1)

where $c$ is the speed of light. The Metric is Diagonal with
\begin{displaymath}
g_{\alpha\alpha}={1\over g_{\alpha\alpha}},
\end{displaymath} (2)

so
\begin{displaymath}
\eta^{\beta\delta}=\eta_{\beta\delta}.
\end{displaymath} (3)

Let $\Lambda$ be the Tensor for a Lorentz Transformation. Then
\begin{displaymath}
\eta^{\beta\delta}\Lambda^{\gamma}{}_{\delta} = \Lambda^{\beta\gamma}
\end{displaymath} (4)


\begin{displaymath}
\eta_{\alpha\gamma}\Lambda^{\beta\gamma} = \Lambda_{\alpha}{}^\beta
\end{displaymath} (5)


\begin{displaymath}
\Lambda_\alpha{}^\beta = \eta_{\alpha\gamma}\Lambda^{\beta\g...
...eta_{\alpha\gamma}\eta^{\beta\delta}
\Lambda^\gamma{}_\delta.
\end{displaymath} (6)

The Necessary and Sufficient conditions for a metric $g_{\mu\nu}$ to be equivalent to the Minkowski metric $\eta_{\alpha\beta}$ are that the Riemann Tensor vanishes everywhere ( $R^\lambda{}_{\mu\nu\kappa}=0$) and that at some point $g^{\mu\nu}$ has three Positive and one Negative Eigenvalues.

See also Lorentz Transformation, Minkowski Metric


References

Thompson, A. C. Minkowski Geometry. New York: Cambridge University Press, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26