info prev up next book cdrom email home

Lucas Polynomial Sequence

A pair of generalized Polynomials which generalize the Lucas Sequence to Polynomials is given by

$\displaystyle W_n^k(x)$ $\textstyle =$ $\displaystyle {\Delta^k(x)[a^n(x)-(-1)^kb^n(x)]\over\Delta(x)}$ (1)
$\displaystyle w_n^k(x)$ $\textstyle =$ $\displaystyle \Delta^k(x)[a^n(x)+(-1)^kb^n(x)],$ (2)

where
\begin{displaymath}
a(x)+b(x)=p(x)
\end{displaymath} (3)


\begin{displaymath}
a(x)b(x)=-q(x)
\end{displaymath} (4)


\begin{displaymath}
a(x)-b(x)=\sqrt{p^2(x)+4q(x)}\equiv\Delta(x)
\end{displaymath} (5)

(Horadam 1996). Setting $n=0$ gives
$\displaystyle W_0^k(x)$ $\textstyle =$ $\displaystyle \Delta^k(x){1-(-1)^k\over\Delta(x)}$ (6)
$\displaystyle w_0^k(x)$ $\textstyle =$ $\displaystyle \Delta^k(x)[1+(-1)^k],$ (7)

giving
$\displaystyle W_0^0(x)$ $\textstyle =$ $\displaystyle 0$ (8)
$\displaystyle w_0^0(x)$ $\textstyle =$ $\displaystyle 2.$ (9)

The sequences most commonly considered have $k=0$, giving
$\displaystyle W_n(x)$ $\textstyle \equiv$ $\displaystyle W_n^0(x)={a^n(x)-b^n(x)\over a(x)-b(x)}$ (10)
$\displaystyle w_n(x)$ $\textstyle \equiv$ $\displaystyle w_n^0(x)=a^n(x)+b^n(x).$ (11)

Special cases are given in the following table.


$p(x)$ $q(x)$ Polynomial 1 Polynomial 2
$x$ 1 Fibonacci $F_n(x)$ Lucas $L_n(x)$
$2x$ 1 Pell $P_n(x)$ Pell-Lucas $Q_n(x)$
1 $2x$ Jacobsthal $J_n(x)$ Jacobsthal $j_n(x)$
$3x$ $-2$ Fermat ${\mathcal F}_n(x)$ Fermat-Lucas $f_n(x)$
$2x$ $-1$ Chebyshev Polynomial of the Second Kind $U_{n-1}(x)$ Chebyshev Polynomial of the First Kind $2T_n(x)$

See also Lucas Sequence


References

Horadam, A. F. ``Extension of a Synthesis for a Class of Polynomial Sequences.'' Fib. Quart. 34, 68-74, 1996.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25