info prev up next book cdrom email home

Logarithmic Integral

\begin{figure}\begin{center}\BoxedEPSF{LogIntegral.epsf}\end{center}\end{figure}

The logarithmic integral is defined by

\begin{displaymath}
\mathop{\rm li}\nolimits (x) \equiv \int_0^x {du\over \ln u}.
\end{displaymath} (1)

The offset form appearing in the Prime Number Theorem is defined so that $\mathop{\rm Li}\nolimits (2)=0$:
$\displaystyle \mathop{\rm Li}\nolimits (x)$ $\textstyle \equiv$ $\displaystyle \int_2^x {du\over \ln u}$ (2)
  $\textstyle =$ $\displaystyle \mathop{\rm li}\nolimits (x)-\mathop{\rm li}\nolimits (2)\approx \mathop{\rm li}\nolimits (x)-1.04516$ (3)
  $\textstyle =$ $\displaystyle \mathop{\rm ei}(\ln x),$ (4)

where $\mathop{\rm ei}\nolimits (x)$ is the Exponential Integral. (Note that the Notation $\mathop{\rm Li}\nolimits _n(z)$ is also used for the Polylogarithm.) Nielsen (1965, pp. 3 and 11) showed and Ramanujan independently discovered (Berndt 1994) that
\begin{displaymath}
\int_\mu^x {dt\over \ln t}=\gamma+\ln\ln x+\sum_{k=1}^\infty {(\ln x)^k\over k!k},
\end{displaymath} (5)

where $\gamma$ is the Euler-Mascheroni Constant and $\mu$ is Soldner's Constant. Another Formula due to Ramanujan which converges more rapidly is


\begin{displaymath}
\int_\mu^x{dt\over\ln t}=\gamma+\ln\ln x+\sqrt{x}\sum_{n=0}^...
...}(\ln x)^n\over n!2^{n-1}}\sum_{k=0}^{[(n-1)/2]} {1\over 2k+1}
\end{displaymath} (6)

(Berndt 1994).

See also Polylogarithm, Prime Constellation, Prime Number Theorem, Skewes Number


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 126-131, 1994.

Nielsen, N. Theorie des Integrallogarithms. New York: Chelsea, 1965.

Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 151, 1991.




© 1996-9 Eric W. Weisstein
1999-05-25