info prev up next book cdrom email home

Radon Transform--Square

\begin{figure}\begin{center}\BoxedEPSF{radon_square.epsf scaled 890}\end{center}\end{figure}


\begin{displaymath}
R(p, \tau)=\int_{-\infty}^\infty \int_{-\infty}^\infty f(x,y) \delta[y-(\tau+px)]\,dy\,dx,
\end{displaymath} (1)

where
\begin{displaymath}
f(x, y)\equiv \cases{
1 & for $x, y\in [-a, a]$\cr
0 & otherwise\cr}
\end{displaymath} (2)

and
\begin{displaymath}
\delta(x)={1\over 2\pi} \int_{-\infty}^\infty e^{-ikx}
\end{displaymath} (3)

is the Delta Function.


$\displaystyle R(p, \tau)$ $\textstyle =$ $\displaystyle {1\over 2\pi} \int_{-a}^a \int_{-a}^a \int_{-\infty}^\infty e^{-ik[y-(\tau+px)]}\,dk\,dy\,dx$  
  $\textstyle =$ $\displaystyle {1\over 2\pi} \int_{-\infty}^\infty e^{ik\tau} \left[{\int_{-a}^a e^{-ky}\,dy \int_{-a}^a e^{ikpx}\,dx}\right]\,dk$  
  $\textstyle =$ $\displaystyle {1\over 2\pi} e^{ik\tau} {1\over -ik} [e^{-iky}]^a_{-a} {1\over ikp} [e^{ikpx}]^a_{-a}\,dk$  
  $\textstyle =$ $\displaystyle {1\over 2\pi} \int_{-\infty}^\infty e^{ik\tau} {1\over k^2p} [-2i\sin(ka)][2i\sin(kpa)]\,dk$  
  $\textstyle =$ $\displaystyle {2\over\pi p} \int_{-\infty}^\infty {\sin(ka)\sin(kpa)e^{ik\tau}\over k^2}\,dk$  
  $\textstyle =$ $\displaystyle {4\over\pi p} \int_0^\infty {\sin(ka)\sin(kpa)\cos(k\tau)\over k^2}\,dk$  
  $\textstyle =$ $\displaystyle {2\over\pi p} \int_0^\infty {\sin[k(\tau+a)]-\sin[k(\tau-a)]\over k^2} \sin(kpa)\,dk$  
  $\textstyle =$ $\displaystyle {2\over\pi p} \left\{{\int_0^\infty {\sin[k(\tau+a)]\sin(kpa)\over k^2}\, dk -\int_0^\infty {\sin[k(\tau-a)]\sin(kpa)\over k^2}\,dk}\right\}.$ (4)

From Gradshteyn and Ryzhik (1979, equation 3.741.3),
\begin{displaymath}
\int_0^\infty {\sin(ax)\sin(bx)\over x^2}\,dx = {\textstyle{...
...n}\nolimits (ab) \mathop{\rm min}(\vert a\vert, \vert b\vert),
\end{displaymath} (5)

so
$\displaystyle R(p, \tau)$ $\textstyle =$ $\displaystyle {1\over p}\left\{{\mathop{\rm sgn}\nolimits [(\tau+a)pa]\mathop{\rm min}(\vert\tau+a\vert, \vert pa\vert)}\right.$  
  $\textstyle \phantom{=}$ $\displaystyle - \left.{\mathop{\rm sgn}\nolimits [(\tau-a)pa]\mathop{\rm min}(\vert\tau-a\vert, \vert pa\vert)}\right\}.$ (6)


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, 1979.




© 1996-9 Eric W. Weisstein
1999-05-25