info prev up next book cdrom email home

q-Dimension


\begin{displaymath}
D_q\equiv {1\over 1-q} \lim_{\epsilon\to 0} {\ln I(q,\epsilon)\over \ln\left({1\over \epsilon}\right),}
\end{displaymath} (1)

where
\begin{displaymath}
I(q,\epsilon)\equiv \sum_{i=1}^N {\mu_i}^q,
\end{displaymath} (2)

$\epsilon$ is the box size, and ${\mu_i}$ is the Natural Measure. If $q_1>q_2$, then
\begin{displaymath}
D_{q_1} \leq D_{q_2}.
\end{displaymath} (3)

The Capacity Dimension (a.k.a. Box Counting Dimension) is given by $q=0$,
\begin{displaymath}
D_0 = {1\over 1-0} \lim_{\epsilon\to 0} {\ln\left({\sum_{i=1...
...= - \lim_{\epsilon\to 0} {\ln[N(\epsilon)]\over \ln \epsilon}.
\end{displaymath} (4)

If all ${\mu_i}$s are equal, then the Capacity Dimension is obtained for any $q$. The Information Dimension is defined by
$\displaystyle D_1$ $\textstyle =$ $\displaystyle \lim_{q\to 1} D_q = \lim_{q\to 1}{\lim_{\epsilon\to 0}{\ln\left[{\sum_{i=1}^{N(\epsilon)}{\mu_i}^q}\right]\over -\ln\epsilon}\over {1-q}}$  
  $\textstyle =$ $\displaystyle \lim_{\epsilon\to 0} \lim_{q\to 1} {\ln\left({\sum_{i=1}^{N(\epsilon)} {\mu_i}^q}\right)\over\ln\epsilon(q-1)}.$ (5)

But
\begin{displaymath}
\lim_{q\to 1} \ln\left({\sum_{i=1}^{N(\epsilon)} {\mu_i}^q}\...
...= \ln\left({\sum_{i=1}^{N(\epsilon)} \mu_i}\right)= \ln 1 = 0,
\end{displaymath} (6)

so use L'Hospital's Rule
\begin{displaymath}
D_1 = \lim_{\epsilon\to 0}\left({{1\over\ln\epsilon} \lim_{q\to 1} {\sum q{\mu_i}^{q-1}\over\sum {\mu_i}^q}}\right).
\end{displaymath} (7)

Therefore,
\begin{displaymath}
D_1 = \lim_{\epsilon\to 0} {\sum_{i=1}^{N(\epsilon)} \mu_i\ln \mu_i\over \ln\epsilon}.
\end{displaymath} (8)

$D_2$ is called the Correlation Dimension. The $q$-dimensions satisfy
\begin{displaymath}
D_{q+1}\leq D_q.
\end{displaymath} (9)

See also Fractal Dimension




© 1996-9 Eric W. Weisstein
1999-05-25