info prev up next book cdrom email home

Positive Definite Quadratic Form

A Quadratic Form $Q({\bf x})$ is said to be positive definite if $Q({\bf x})>0$ for ${\bf x}\not={\bf0}$. A Real Quadratic Form in $n$ variables is positive definite Iff its canonical form is

\begin{displaymath}
Q({\bf z})={z_1}^2+{z_2}^2+\ldots+{z_n}^2.
\end{displaymath} (1)


A Binary Quadratic Form

\begin{displaymath}
F(x,y)=a_{11}x^2+2a_{12}xy+a_{22}y^2
\end{displaymath} (2)

of two Real variables is positive definite if it is $>0$ for any $(x,y)\not=(0,0)$, therefore if $a_{11}>0$ and the Discriminant $a\equiv a_{11}a_{22}-{a_{12}}^2>0$. A Binary Quadratic Form is positive definite if there exist Nonzero $x$ and $y$ such that
\begin{displaymath}
(ax^2+2bxy+cy^2)^2\leq {\textstyle{4\over 3}}\vert ac-b^2\vert
\end{displaymath} (3)

(Le Lionnais 1983).


A Quadratic Form $({\bf x}, {\hbox{\sf A}}{\bf x})$ is positive definite Iff every Eigenvalue of ${\hbox{\sf A}}$ is Positive. A Quadratic Form $Q=({\bf x}, {\hbox{\sf A}}{\bf x})$ with ${\hbox{\sf A}}$ a Hermitian Matrix is positive definite if all the principal minors in the top-left corner of ${\hbox{\sf A}}$ are Positive, in other words

$\displaystyle a_{11}$ $\textstyle >$ $\displaystyle 0$ (4)
$\displaystyle \left\vert\begin{array}{cc}a_{11} & a_{12}\\  a_{21} & a_{22}\end{array}\right\vert$ $\textstyle >$ $\displaystyle 0$ (5)
$\displaystyle \left\vert\begin{array}{ccc}a_{11} & a_{12} & a_{13}\\  a_{21} & a_{22} & a_{23}\\  a_{31} & a_{32} & a_{33}\end{array}\right\vert$ $\textstyle >$ $\displaystyle 0.$ (6)

See also Indefinite Quadratic Form, Positive Semidefinite Quadratic Form


References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, p. 1106, 1979.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 38, 1983.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26