info prev up next book cdrom email home

Poisson's Harmonic Function Formula

Let $\phi(z)$ be a Harmonic Function. Then

\begin{displaymath}
\phi(z_0)={1\over 2\pi} \int_0^{2\pi} K(r,\theta)\phi(z_0+re^{i\theta})\,d\theta,
\end{displaymath} (1)

where $R=\vert z_0\vert$ and $K(r,\theta)$ is the Poisson Kernel. For a Circle,


\begin{displaymath}
u(x,y)={1\over 2\pi} \int_0^{2\pi} u(a\cos\phi,a\sin\phi){a^2-R^2\over a^2+R^2-2ar\cos(\theta-\phi)} \,d\phi.
\end{displaymath} (2)

For a Sphere,
\begin{displaymath}
u(x,y,z) = {1\over 4\pi a}\int\!\!\!\int _S u {a^2-R^2\over (a^2+R^2-2aR\cos\theta)^{3/2}}\,dS,
\end{displaymath} (3)

where
\begin{displaymath}
\cos\theta\equiv {\bf x}\cdot {\boldsymbol{\xi}}.
\end{displaymath} (4)

See also Circle, Harmonic Function, Poisson Kernel, Sphere


References

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 373-374, 1953.




© 1996-9 Eric W. Weisstein
1999-05-25