| 
 | 
 | 
N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Given any arrangement of 
 points within a Unit Square, let 
 be the smallest value for which
there is at least one Triangle formed from three of the points with Area 
.  The first few
values are
Using an Equilateral Triangle of unit Area instead gives the constants
References
Finch, S.  ``Favorite Mathematical Constants.''  http://www.mathsoft.com/asolve/constant/hlb/hlb.html
 
Goldberg, M.  ``Maximizing the Smallest Triangle Made by  
Guy, R. K.  Unsolved Problems in Number Theory, 2nd ed.  New York: Springer-Verlag, pp. 242-244, 1994.
 
Komlos, J.; Pintz, J.; and Szemerédi, E.  ``On Heilbronn's Triangle Problem.''  J. London Math. Soc.
  24, 385-396, 1981.
 
Komlos, J.; Pintz, J.; and Szemerédi, E.  ``A Lower Bound for Heilbronn's Triangle Problem.''
  J. London Math. Soc. 25, 13-24, 1982.
 
Roth, K. F.  ``Developments in Heilbronn's Triangle Problem.''  Adv. Math. 22, 364-385, 1976.
 
 Points in a Square.''  Math. Mag. 45, 135-144, 1972.
| 
 | 
 | 
© 1996-9 Eric W. Weisstein