info prev up next book cdrom email home

Green's Function--Poisson's Equation

Poisson's Equation equation is

\end{displaymath} (1)

where $\phi$ is often called a potential function and $\rho$ a density function, so the differential operator in this case is $\tilde L = \nabla^2$. As usual, we are looking for a Green's function $G({\bf r}_1,{\bf r}_2)$ such that
\nabla^2 G({\bf r}_1,{\bf r}_2) = \delta^3({\bf r}_1-{\bf r}_2).
\end{displaymath} (2)

But from Laplacian,
\nabla^2\left({1\over \vert{\bf r}-{\bf r}'\vert}\right)= -4\pi\delta^3({\bf r}-{\bf r}'),
\end{displaymath} (3)

G({\bf r},{\bf r}') = - {1\over 4\pi \vert{\bf r}-{\bf r}'\vert},
\end{displaymath} (4)

and the solution is
\phi({\bf r})=\int G({\bf r},{\bf r}')[4\pi \rho({\bf r}')]\...
... {\rho({\bf r}')\,d^3{\bf r}'\over\vert{\bf r}-{\bf r}'\vert}.
\end{displaymath} (5)

Expanding $G({\bf r}_1,{\bf r}_2)$ in the Spherical Harmonics $Y_l^m$ gives

G({\bf r}_1,{\bf r}_2) = \sum_{l=0}^\infty \sum_{m=-l}^l {1\...
...r r_>^{l+1}} Y_l^m(\theta_1,\phi_1){Y_l^m}^*(\theta_2,\phi_2),
\end{displaymath} (6)

where $r_<$ and $r_>$ are Greater Than/Less Than Symbols. This expression simplifies to
G({\bf r}_1,{\bf r}_2) = {1\over 4\pi} \sum_{l=0}^\infty {r_<^l\over r_>^{l+1}} P_l (\cos\gamma),
\end{displaymath} (7)

where $P_l$ are Legendre Polynomials, and $\cos\gamma\equiv {\bf r}_1\cdot{\bf r}_2$. Equations (6) and (7) give the addition theorem for Legendre Polynomials.

In Cylindrical Coordinates, the Green's function is much more complicated,

G({\bf r}_1,{\bf r}_2) = {1\over 2\pi^2}\sum_{m=-\infty}^\in...
...\rho_<)K_m(k\rho_>)e^{im(\phi_1-\phi_2)}\cos[k(z_1-z_2)]\, dk,
\end{displaymath} (8)

where $I_m(x)$ and $K_m(x)$ are Modified Bessel Functions of the First and Second Kinds (Arfken 1985).


Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 485-486, 905, and 912, 1985.

info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein