info prev up next book cdrom email home


An object created by Folding a piece of paper along certain lines to form loops. The number of states possible in an $n$-Flexagon is a Catalan Number. By manipulating the folds, it is possible to hide and reveal different faces.

See also Flexatube, Folding, Hexaflexagon, Tetraflexagon



Crampin, J. ``On Note 2449.'' Math. Gazette 41, 55-56, 1957.

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 205-207, 1989.

Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 62-84, 1979.

Gardner, M. ``Hexaflexagons.'' Ch. 1 in The Scientific American Book of Mathematical Puzzles & Diversions. New York: Simon and Schuster, 1959.

Gardner, M. Ch. 2 in The Second Scientific American Book of Mathematical Puzzles & Diversions: A New Selection. New York: Simon and Schuster, pp. 24-31, 1961.

Maunsell, F. G. ``The Flexagon and the Hexaflexagon.'' Math. Gazette 38, 213-214, 1954.

Oakley, C. O. and Wisner, R. J. ``Flexagons.'' Amer. Math. Monthly 64, 143-154, 1957.

Wheeler, R. F. ``The Flexagon Family.'' Math. Gaz. 42, 1-6, 1958.

© 1996-9 Eric W. Weisstein