info prev up next book cdrom email home

Digamma Function

\begin{figure}\begin{center}\BoxedEPSF{Digamma.epsf}\end{center}\end{figure}

\begin{figure}\begin{center}\BoxedEPSF{DigammaReIm.epsf scaled 670}\end{center}\end{figure}

Two notations are used for the digamma function. The $\Psi(z)$ digamma function is defined by

\begin{displaymath}
\Psi(z)\equiv {d\over dz} \ln\Gamma(z) = {\Gamma'(z)\over\Gamma(z)},
\end{displaymath} (1)

where $\Gamma$ is the Gamma Function, and is the function returned by the function PolyGamma[z] in Mathematica ${}^{\scriptstyle\circledRsymbol}$ (Wolfram Research, Champaign, IL). The $F$ digamma function is defined by
\begin{displaymath}
F(z) \equiv {d\over dz} \ln z!
\end{displaymath} (2)

and is equal to
\begin{displaymath}
F(z)=\Psi(z+1).
\end{displaymath} (3)

From a series expansion of the Factorial function,


$\displaystyle F(z)$ $\textstyle =$ $\displaystyle {d\over dz} \lim_{n\to \infty} [\ln n!+z\ln n-\ln (z+1)-\ln (z+2)-\ldots -\ln (z+n)]$ (4)
  $\textstyle =$ $\displaystyle \lim_{n\to\infty}\left({\ln n-{1\over z+1}-{1\over z+2}-\ldots-{1\over z+n}}\right)$  
      (5)
  $\textstyle =$ $\displaystyle -\gamma - \sum_{n=1}^\infty \left({{1\over z+n} - {1\over n}}\right)$ (6)
  $\textstyle =$ $\displaystyle -\gamma + \sum_{n=1}^\infty {z\over n(n+z)}$ (7)
  $\textstyle =$ $\displaystyle \ln z + {1\over 2z} - \sum_{n=1}^\infty {B_{2n}\over 2nz^{2n}},$ (8)

where $\gamma$ is the Euler-Mascheroni Constant and $B_{2n}$ are Bernoulli Numbers.


The $n$th Derivative of $\Psi(z)$ is called the Polygamma Function and is denoted $\psi_n(z)$. Since the digamma function is the zeroth derivative of $\Psi(z)$ (i.e., the function itself), it is also denoted $\psi_0(z)$.


The digamma function satisfies

\begin{displaymath}
\Psi(z) = \int_0^\infty \left({{e^{-t}\over t}-{e^{-zt}\over 1-e^{-t}}}\right)\,dt.
\end{displaymath} (9)

For integral $z\equiv n$,
\begin{displaymath}
\Psi(n)=-\gamma+\sum_{k=1}^{n-1}{1\over k}=-\gamma+H_{n-1},
\end{displaymath} (10)

where $\gamma$ is the Euler-Mascheroni Constant and $H_n$ is a Harmonic Number. Other identities include
\begin{displaymath}
{d\Psi\over dz} = \sum_{n=0}^\infty {1\over(z+n)^2}
\end{displaymath} (11)


\begin{displaymath}
\Psi(1-z)-\Psi(z)=\pi \cot(\pi z)
\end{displaymath} (12)


\begin{displaymath}
\Psi(z+1)=\Psi(z)+{1\over z}
\end{displaymath} (13)


\begin{displaymath}
\Psi(2z)={\textstyle{1\over 2}}\Psi(z)+{\textstyle{1\over 2}}\Psi(z+{\textstyle{1\over 2}})+\ln 2.
\end{displaymath} (14)


Special values are

$\displaystyle \Psi({\textstyle{1\over 2}})$ $\textstyle =$ $\displaystyle -\gamma-2\ln 2$ (15)
$\displaystyle \Psi(1)$ $\textstyle =$ $\displaystyle -\gamma.$ (16)

At integral values,

\begin{displaymath}
\psi_0(n+1)=-\gamma+\sum_{k=1}^n {1\over k},
\end{displaymath} (17)

and at half-integral values,
\begin{displaymath}
\psi_0({\textstyle{1\over 2}}\pm n)=-\ln(4\gamma)+2\sum_{k=1}^n {1\over 2k-1}.
\end{displaymath} (18)

At rational arguments, $\psi_0(p/q)$ is given by the explicit equation


\begin{displaymath}
\psi_0\left({p\over q}\right)=-\gamma-\ln(2q)-{\textstyle{1\...
...ver q}\right)\ln\left[{\sin\left({\pi k\over q}\right)}\right]
\end{displaymath} (19)

for $0<p<q$ (Knuth 1973). These give the special values
$\displaystyle \psi_0({\textstyle{1\over 2}})$ $\textstyle =$ $\displaystyle -\gamma-2\ln 2$ (20)
$\displaystyle \psi_0({\textstyle{1\over 3}})$ $\textstyle =$ $\displaystyle {\textstyle{1\over 6}}(-6\gamma-\pi\sqrt{3}-9\ln 3)$ (21)
$\displaystyle \psi_0({\textstyle{2\over 3}})$ $\textstyle =$ $\displaystyle {\textstyle{1\over 6}}(-6\gamma+\pi\sqrt{3}-9\ln 3)$ (22)
$\displaystyle \psi_0({\textstyle{1\over 4}})$ $\textstyle =$ $\displaystyle -\gamma-{\textstyle{1\over 2}}\pi-3\ln 2$ (23)
$\displaystyle \psi_0({\textstyle{3\over 4}})$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(-2\gamma+\pi-6\ln 2)$ (24)
$\displaystyle \psi_0(1)$ $\textstyle =$ $\displaystyle -\gamma,$ (25)

where $\gamma$ is the Euler-Mascheroni Constant. Sums and differences of $\psi_1(r/s)$ for small integral $r$ and $s$ can be expressed in terms of Catalan's Constant and $\pi$.


See also Gamma Function, Harmonic Number, Hurwitz Zeta Function, Polygamma Function


References

Abramowitz, M. and Stegun, C. A. (Eds.). ``Psi (Digamma) Function.'' §6.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 258-259, 1972.

Arfken, G. ``Digamma and Polygamma Functions.'' §10.2 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 549-555, 1985.

Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed. Reading, MA: Addison-Wesley, p. 94, 1973.

Spanier, J. and Oldham, K. B. ``The Digamma Function $\psi(x)$.'' Ch. 44 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 423-434, 1987.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24