info prev up next book cdrom email home

Ultraspherical Differential Equation


\begin{displaymath}
(1-x^2) y''-(2\alpha+1)x y'+n(n+2\alpha)y = 0.
\end{displaymath} (1)

Alternate forms are
\begin{displaymath}
(1-x^2)Y''+(2\lambda-3)xY'+(n+1)(n+2\lambda-1)Y=0,
\end{displaymath} (2)

where
\begin{displaymath}
Y=(1-x^2)^{\lambda-1/2}P_n^{(\lambda)}(x),
\end{displaymath} (3)


\begin{displaymath}
{d^2u\over dx^2}+\left[{{(n+\lambda)^2\over 1-x^2}+{{\textst...
...lambda^2+{\textstyle{1\over 4}}x^2\over (1-x^2)^2}}\right]u=0,
\end{displaymath} (4)

where
\begin{displaymath}
u=(1-x^2)^{\lambda/2+1/4} P_n^{(\lambda)}(x),
\end{displaymath} (5)

and
\begin{displaymath}
{d^2u\over d\theta^2}+\left[{(n+\lambda)^2+{\lambda(1-\lambda)\over\sin^2\theta}}\right]u=0,
\end{displaymath} (6)

where
\begin{displaymath}
u=\sin^\lambda\theta \,P_n^{(\lambda)}(\cos\theta).
\end{displaymath} (7)

The solutions are the Ultraspherical Functions $P_n^{(\lambda)}(x)$. For integral $n$ with $\alpha < 1/2$, the function converges to the Ultraspherical Polynomials $C_n^{(\alpha)}(x)$.


References

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 547-549, 1953.




© 1996-9 Eric W. Weisstein
1999-05-26