info prev up next book cdrom email home

Pollaczek Polynomial

Let $a>\vert b\vert$, and write

\begin{displaymath}
h(\theta)={a\cos\theta+b\over 2\sin\theta}.
\end{displaymath} (1)

Then define $P_n(x;a,b)$ by the Generating Function


\begin{displaymath}
f(x,w)=f(\cos\theta,w)=\sum_{n=0}^\infty P_n(x;a,b)w^n = (1-...
...i\theta})^{-1/2+ih(\theta)}(1-we^{i\theta})^{-1/2-ih(\theta)}.
\end{displaymath} (2)

The Generating Function may also be written


\begin{displaymath}
f(x,w)=(1-2xw+w^2)^{-1/2}\mathop{\rm exp}\nolimits \left[{(ax+b)\sum_{m=1}^\infty {w^m\over m} U_{m-1}(x)}\right],
\end{displaymath} (3)

where $U_m(x)$ is a Chebyshev Polynomial of the Second Kind. They satisfy the Recurrence Relation


\begin{displaymath}
nP_n(x;a,b)=[(2n-1+2a)x+2b]P_{n-1}(x;a,b)-(n-1)P_{n-2}(x;a,b)
\end{displaymath} (4)

for $n=2$, 3, ...with
$\displaystyle P_0$ $\textstyle =$ $\displaystyle 1$ (5)
$\displaystyle P_1$ $\textstyle =$ $\displaystyle (2a+1)x+2b.$ (6)

In terms of the Hypergeometric Function ${}_2F_1(a,b;c;x)$,
\begin{displaymath}
P_n(\cos\theta; a; b)=e^{in\theta}{}_2F_1(-n, {\textstyle{1\over 2}}+ih(\theta); 1; 1-e^{-2i\theta}).
\end{displaymath} (7)

They obey the orthogonality relation


\begin{displaymath}
\int_{-1}^1 P_n(x; a,b)P_m(x; a,b)w(x; a,b)\,dx=[n+{\textstyle{1\over 2}}(a+1)]^{-1} \delta_{nm},
\end{displaymath} (8)

where $\delta_{nm}$ is the Kronecker Delta, for $n,m=0$, 1, ..., with the Weight Function
\begin{displaymath}
w(\cos\theta; a,b)=e^{(2\theta-\pi)h(\theta)} \{\cosh[\pi h(\theta)]\}^{-1}.
\end{displaymath} (9)


References

Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 393-400, 1975.




© 1996-9 Eric W. Weisstein
1999-05-25