info prev up next book cdrom email home

Motzkin Number

\begin{figure}\begin{center}\BoxedEPSF{MotzkinNumber.epsf}\end{center}\end{figure}

The Motzkin numbers enumerate various combinatorial objects. Donaghey and Shapiro (1977) give 14 different manifestations of these numbers. In particular, they give the number of paths from (0, 0) to ($n$, 0) which never dip below $y=0$ and are made up only of the steps (1, 0), (1, 1), and (1, $-1$), i.e., $\rightarrow$, $\nearrow$, and $\searrow$. The first are 1, 2, 4, 9, 21, 51, ... (Sloane's A001006). The Motzkin number Generating Function $M(z)$ satisfies

\begin{displaymath}
M=1+xM+x^2M^2
\end{displaymath} (1)

and is given by


\begin{displaymath}
M(x)={1-x-\sqrt{1-2x-3x^2}\over 2x^2}=1+x+2x^2+4x^3+9x^4+21x^5+\ldots,
\end{displaymath} (2)

or by the Recurrence Relation
\begin{displaymath}
M_n=a_{n-1}+\sum_{k=0}^{n-2} M_k M_{n-2-k}
\end{displaymath} (3)

with $M_0=1$. The Motzkin number $M_n$ is also given by
$\displaystyle M_n$ $\textstyle =$ $\displaystyle -{1\over 2}\sum_{\scriptstyle a+b=n+2\atop\scriptstyle a\geq 0, b\geq 0} (-3)^a{{\textstyle{1\over 2}}\choose a}{{\textstyle{1\over 2}}\choose b}$ (4)
  $\textstyle =$ $\displaystyle {(-1)^{n+1}\over 2^{2n+5}}\sum_{\scriptstyle a+b=n+2\atop\scriptstyle a\geq 0, b\geq 0} {(-3)^a\over(2a-1)(2b-1)}{2a\choose a}{2b\choose b},$  
      (5)

where ${n\choose k}$ is a Binomial Coefficient.

See also Catalan Number, King Walk, Schröder Number


References

Barcucci, E.; Pinzani, R.; and Sprugnoli, R. ``The Motzkin Family.'' Pure Math. Appl. Ser. A 2, 249-279, 1991.

Donaghey, R. ``Restricted Plane Tree Representations of Four Motzkin-Catalan Equations.'' J. Combin. Th. Ser. B 22, 114-121, 1977.

Donaghey, R. and Shapiro, L. W. ``Motzkin Numbers.'' J. Combin. Th. Ser. A 23, 291-301, 1977.

Kuznetsov, A.; Pak, I.; and Postnikov, A. ``Trees Associated with the Motzkin Numbers.'' J. Combin. Th. Ser. A 76, 145-147, 1996.

Motzkin, T. ``Relations Between Hypersurface Cross Ratios, and a Combinatorial Formula for Partitions of a Polygon, for Permanent Preponderance, and for Nonassociative Products.'' Bull. Amer. Math. Soc. 54, 352-360, 1948.

Sloane, N. J. A. Sequence A001006/M1184 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26