info prev up next book cdrom email home

Mollweide's Formulas

Let a Triangle have side lengths $a$, $b$, and $c$ with opposite angles $A$, $B$, and $C$. Then

$\displaystyle {b-c\over a}$ $\textstyle =$ $\displaystyle {\sin[{\textstyle{1\over 2}}(B-C)]\over\cos({\textstyle{1\over 2}}A)}$  
$\displaystyle {c-a\over b}$ $\textstyle =$ $\displaystyle {\sin[{\textstyle{1\over 2}}(C-A)]\over\cos({\textstyle{1\over 2}}B)}$  
$\displaystyle {a-b\over c}$ $\textstyle =$ $\displaystyle {\sin[{\textstyle{1\over 2}}(A-B)]\over\cos({\textstyle{1\over 2}}C)}.$  

See also Newton's Formulas, Triangle


Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 146, 1987.

© 1996-9 Eric W. Weisstein