info prev up next book cdrom email home

Modulo Multiplication Group

A Finite Group $M_m$ of Residue Classes prime to $m$ under multiplication mod $m$. $M_m$ is Abelian of Order $\phi(m)$, where $\phi(m)$ is the Totient Function. The following table gives the modulo multiplication groups of small orders.

$M_m$ Group $\phi(m)$ Elements
$M_2$ $\left\langle{e}\right\rangle{}$ 1 1
$M_3$ $Z_2$ 2 1, 2
$M_4$ $Z_2$ 2 1, 3
$M_5$ $Z_4$ 4 1, 2, 3, 4
$M_6$ $Z_2$ 2 1, 5
$M_7$ $Z_6$ 6 1, 2, 3, 4, 5, 6
$M_8$ $Z_2\otimes Z_2$ 4 1, 3, 5, 7
$M_9$ $Z_6$ 6 1, 2, 4, 5, 7, 8
$M_{10}$ $Z_4$ 4 1, 3, 7, 9
$M_{11}$ $Z_{10}$ 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$M_{12}$ $Z_2\otimes Z_2$ 4 1, 5, 7, 11
$M_{13}$ $Z_{12}$ 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
$M_{14}$ $Z_6$ 6 1, 3, 5, 9, 11, 13
$M_{15}$ $Z_2\otimes Z_4$ 8 1, 2, 4, 7, 8, 11, 13, 14
$M_{16}$ $Z_2\otimes Z_4$ 8 1, 3, 5, 7, 9, 11, 13, 15
$M_{17}$ $Z_{16}$ 16 1, 2, 3, ..., 16
$M_{18}$ $Z_6$ 6 1, 5, 7, 11, 13, 17
$M_{19}$ $Z_{18}$ 18 1, 2, 3, ..., 18
$M_{20}$ $Z_2\otimes Z_4$ 8 1, 3, 7, 9, 11, 13, 17, 19
$M_{21}$ $Z_2\otimes Z_6$ 12 1, 2, 4, 5, 7, 8, 10, 11, 13, 16, 17, 19
$M_{22}$ $Z_{10}$ 10 1, 3, 5, 7, 9, 13, 15, 17, 19, 21
$M_{23}$ $Z_{22}$ 22 1, 2, 3, ..., 22
$M_{24}$ $Z_2\otimes Z_2\otimes Z_2$ 8 1, 5, 7, 11, 13, 17, 19, 23


$M_m$ is a Cyclic Group (which occurs exactly when $m$ has a Primitive Root) Iff $m$ is of one of the forms $m=2$, 4, $p^n$, or $2p^n$, where $p$ is an Odd Prime and $n\geq 1$ (Shanks 1993, p. 92).


\begin{figure}\begin{center}\BoxedEPSF{ModuloMultiplication.epsf scaled 700}\end{center}\end{figure}

Isomorphic modulo multiplication groups can be determined using a particular type of factorization of $\phi(m)$ as described by Shanks (1993, pp. 92-93). To perform this factorization (denoted $\phi_m$), factor $m$ in the standard form

\begin{displaymath}
m={p_1}^{a_1}{p_2}^{a_2}\cdots {p_n}^{a_n}.
\end{displaymath} (1)

Now write the factorization of the Totient Function involving each power of an Odd Prime
\begin{displaymath}
\phi({p_i}^{a_i})=(p_i-1){p_i}^{a_i-1}
\end{displaymath} (2)

as
\begin{displaymath}
\phi({p_i}^{a_i})=\left\langle{{q_1}^{b_1}}\right\rangle{}\l...
..._s}}\right\rangle{}\left\langle{{p_i}^{a_i-1}}\right\rangle{},
\end{displaymath} (3)

where
\begin{displaymath}
p_i-1={q_1}^{b_1}{q_2}^{b_2}\cdots{q_s}^{b_s},
\end{displaymath} (4)

$\left\langle{q^b}\right\rangle{}$ denotes the explicit expansion of $q^b$ (i.e., $5^2=25$), and the last term is omitted if $a_i=1$. If $p_1=2$, write
\begin{displaymath}
\phi(2^{a_1})=\cases{ 2 & for $a_1=2$\cr 2\left\langle{2^{a_1-2}}\right\rangle{} & for $a_1>2$.\cr}
\end{displaymath} (5)

Now combine terms from the odd and even primes. For example, consider $m=104=2^3\cdot 13$. The only odd prime factor is 13, so factoring gives $13-1=12=\left\langle{2^2}\right\rangle{}\left\langle{3}\right\rangle{}=3\cdot 4$. The rule for the powers of 2 gives $2^3=2\left\langle{2^{3-2}}\right\rangle{}=2\left\langle{2}\right\rangle{}=2\cdot
2$. Combining these two gives $\phi_{104}=2\cdot 2\cdot 3\cdot 4$. Other explicit values of $\phi_m$ are given below.
$\displaystyle \phi_3$ $\textstyle =$ $\displaystyle 2$  
$\displaystyle \phi_4$ $\textstyle =$ $\displaystyle 2$  
$\displaystyle \phi_5$ $\textstyle =$ $\displaystyle 4$  
$\displaystyle \phi_6$ $\textstyle =$ $\displaystyle 2$  
$\displaystyle \phi_{15}$ $\textstyle =$ $\displaystyle 2\cdot 4$  
$\displaystyle \phi_{16}$ $\textstyle =$ $\displaystyle 2\cdot 4$  
$\displaystyle \phi_{17}$ $\textstyle =$ $\displaystyle 16$  
$\displaystyle \phi_{104}$ $\textstyle =$ $\displaystyle 2\cdot 2\cdot 3\cdot 4$  
$\displaystyle \phi_{105}$ $\textstyle =$ $\displaystyle 2\cdot 2\cdot 3\cdot 4.$  


$M_m$ and $M_n$ are isomorphic Iff $\phi_m$ and $\phi_n$ are identical. More specifically, the abstract Group corresponding to a given $M_m$ can be determined explicitly in terms of a Direct Product of Cyclic Groups of the so-called Characteristic Factors, whose product is denoted $\Phi_n$. This representation is obtained from $\phi_m$ as the set of products of largest powers of each factor of $\phi_m$. For example, for $\phi_{104}$, the largest power of $2$ is $4=2^2$ and the largest power of 3 is $3=3^1$, so the first characteristic factor is $4\times 3=12$, leaving $2\cdot 2$ (i.e., only powers of two). The largest power remaining is $2=2^1$, so the second Characteristic Factor is 2, leaving 2, which is the third and last Characteristic Factor. Therefore, $\Phi_{104}=2\cdot 2\cdot 4$, and the group $M_m$ is isomorphic to $Z_2\otimes Z_2\otimes Z_4$.


The following table summarizes the isomorphic modulo multiplication groups $M_n$ for the first few $n$ and identifies the corresponding abstract Group. No $M_m$ is Isomorphic to $Z_8$, $Q_8$, or $D_4$. However, every finite Abelian Group is isomorphic to a Subgroup of $M_m$ for infinitely many different values of $m$ (Shanks 1993, p. 96). Cycle Graphs corresponding to $M_n$ for small $n$ are illustrated above, and more complicated Cycle Graphs are illustrated by Shanks (1993, pp. 87-92).

Group Isomorphic $M_m$
$\left\langle{e}\right\rangle{}$ $M_2$
$Z_2$ $M_3$, $M_4$, $M_6$
$Z_4$ $M_5$, $M_{10}$
$Z_2\otimes Z_2$ $M_8$, $M_{12}$
$Z_6$ $M_7$, $M_9$, $M_{14}$, $M_{18}$
$Z_2\otimes Z_4$ $M_{15}$, $M_{16}$, $M_{20}$, $M_{30}$
$Z_2\otimes Z_2\otimes Z_2$ $M_{24}$
$Z_{10}$ $M_{11}$, $M_{22}$
$Z_{12}$ $M_{13}$, $M_{26}$
$Z_2\otimes Z_6$ $M_{21}$, $M_{28}$, $M_{36}$, $M_{42}$
$Z_{16}$ $M_{17}$, $M_{34}$
$Z_2\otimes Z_8$ $M_{32}$
$Z_2\otimes Z_2\otimes Z_4$ $M_{40}$, $M_{48}$, $M_{60}$
$Z_{18}$ $M_{19}$, $M_{27}$, $M_{38}$, $M_{54}$
$Z_{20}$ $M_{25}$, $M_{50}$
$Z_2\otimes Z_{10}$ $M_{33}$, $M_{44}$, $M_{66}$
$Z_{22}$ $M_{23}$, $M_{46}$
$Z_2\otimes Z_{12}$ $M_{35}$, $M_{39}$, $M_{45}$, $M_{52}$, $M_{70}$, $M_{78}$, $M_{90}$
$Z_{28}$ $M_{29}$, $M_{58}$
$Z_{30}$ $M_{31}$, $M_{62}$
$Z_{36}$ $M_{37}$, $M_{74}$


The number of Characteristic Factors $r$ of $M_m$ for $m=1$, 2, ... are 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, ... (Sloane's A046072). The number of Quadratic Residues in $M_m$ for $m>2$ are given by $\phi(m)/2^r$ (Shanks 1993, p. 95). The first few for $m=1$, 2, ... are 0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 5, 1, 6, ... (Sloane's A046073).


In the table below, $\phi(n)$ is the Totient Function (Sloane's A000010) factored into Characteristic Factors, $\lambda(n)$ is the Carmichael Function (Sloane's A011773), and $g_i$ are the smallest generators of the group $M_n$ (of which there is a number equal to the number of Characteristic Factors).

$n$ $\phi(n)$ $\lambda(n)$ $g_i$ $n$ $\phi(n)$ $\lambda(n)$ $g_i$
3 2 2 2 27 18 18 2
4 2 2 3 28 $2\cdot 6$ 6 13, 3
5 4 2 2 29 28 28 2
6 2 2 5 30 $2\cdot 4$ 4 11, 7
7 6 6 3 31 30 30 3
8 $2\cdot 2$ 2 7, 3 32 $2\cdot 8$ 8 31, 3
9 6 6 2 33 $2\cdot 10$ 10 10, 2
10 4 4 3 34 16 16 3
11 10 10 2 35 $2\cdot 12$ 12 6, 2
12 $2\cdot 2$ 2 5, 7 36 $2\cdot 6$ 6 19,5
13 12 12 2 37 36 36 2
14 6 6 3 38 18 18 3
15 $2\cdot 4$ 4 14, 2 39 $2\cdot 12$ 12 38, 2
16 $2\cdot 4$ 4 15, 3 40 $2\cdot 2\cdot 4$ 4 39, 11, 3
17 16 16 3 41 40 40 6
18 6 6 5 42 $2\cdot 6$ 6 13, 5
19 18 18 2 43 42 42 3
20 $2\cdot 4$ 4 19, 3 44 $2\cdot 10$ 10 43, 3
21 $2\cdot 6$ 6 20, 2 45 $2\cdot 12$ 12 44, 2
22 10 10 7 46 22 22 5
23 22 22 5 47 46 46 5
24 $2\cdot 2\cdot 2$ 2 5, 7, 13 48 $2\cdot 2\cdot 4$ 4 47, 7, 5
25 20 20 2 49 42 42 3
26 12 12 7 50 20 20 3

See also Characteristic Factor, Cycle Graph, Finite Group, Residue Class


References

Riesel, H. ``The Structure of the Group $M_n$.'' Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 270-272, 1994.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 61-62 and 92, 1993.

Sloane, N. J. A. Sequences A011773, A046072, A046073, and A000010/M0299 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' http://www.research.att.com/~njas/sequences/eisonline.html.

mathematica.gif Weisstein, E. W. ``Groups.'' Mathematica notebook Groups.m.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26