info prev up next book cdrom email home

Lehmer's Constant

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Lehmer (1938) showed that every Positive Irrational Number $x$ has a unique infinite continued cotangent representation of the form

\begin{displaymath}
x=\cot\left[{\,\sum_{k=0}^\infty (-1)^k\cot^{-1} b_k}\right],
\end{displaymath}

where the $b_k$s are Nonnegative and

\begin{displaymath}
b_k\geq (b_{k-1})^2+b_{k-1}+1.
\end{displaymath}


The case for which the convergence is slowest occurs when the inequality is replaced by equality, giving $c_0=0$ and

\begin{displaymath}
c_k=(c_{k-1})^2+c_{k-1}+1
\end{displaymath}

for $k\geq 1$. The first few values are $c_k$ are 0, 1, 3, 13, 183, 33673, ... (Sloane's A024556), resulting in the constant
$\displaystyle \xi$ $\textstyle =$ $\displaystyle \cot(\cot^{-1} 0-\cot^{-1}1+\cot^{-1}3-\cot^{-1}13$  
  $\textstyle \phantom{=}$ $\displaystyle +\cot^{-1}183-\cot^{-1}33673+\cot^{-1}1133904603$  
  $\textstyle \phantom{=}$ $\displaystyle -\cot^{-1}1285739649838492213+\ldots+(-1)^kc_k+\ldots)$  
  $\textstyle =$ $\displaystyle \cot({\textstyle{1\over 4}}\pi+\cot^{-1}3-\cot^{-1}13$  
  $\textstyle \phantom{=}$ $\displaystyle +\cot^{-1}183-\cot^{-1}33673+\cot^{-1}1133904603$  
  $\textstyle \phantom{=}$ $\displaystyle -\cot^{-1}1285739649838492213+\ldots+(-1)^kc_k+\ldots)$  
  $\textstyle =$ $\displaystyle 0.59263271\ldots$  

(Sloane's A030125). $\xi$ is not an Algebraic Number of degree less than $4$, but Lehmer's approach cannot show whether or not $\xi$ is Transcendental.

See also Algebraic Number, Transcendental Number


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/lehmer/lehmer.html

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 29, 1983.

Lehmer, D. H. ``A Cotangent Analogue of Continued Fractions.'' Duke Math. J. 4, 323-340, 1938.

Plouffe, S. ``The Lehmer Constant.'' http://www.lacim.uqam.ca/piDATA/lehmer.txt.

Sloane, N. J. A. A024556 and A030125 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' http://www.research.att.com/~njas/sequences/eisonline.html.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26