info prev up next book cdrom email home

Legendre Differential Equation

The second-order Ordinary Differential Equation

\begin{displaymath}
(1-x^2) {d^2y\over dx^2} - 2x {dy\over dx} + l(l+1)y = 0,
\end{displaymath} (1)

which can be rewritten
\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ l(l+1) y = 0.
\end{displaymath} (2)

The above form is a special case of the associated Legendre differential equation with $m=0$. The Legendre differential equation has Regular Singular Points at $-1$, 1, and $\infty$. It can be solved using a series expansion,
$\displaystyle y$ $\textstyle =$ $\displaystyle \sum_{n=0}^\infty a_nx^n$ (3)
$\displaystyle y'$ $\textstyle =$ $\displaystyle \sum_{n=0}^\infty na_nx^{n-1}$ (4)
$\displaystyle y''$ $\textstyle =$ $\displaystyle \sum_{n=0}^\infty n(n-1)a_nx^{n-2}.$ (5)

Plugging in,


\begin{displaymath}
(1-x^2)\sum_{n=0}^\infty n(n-1)a_nx^{n-2}-2x\sum_{n=0}^\infty na_nx^{n-1}+l(l+1)\sum_{n=0}^\infty a_nx^n=0
\end{displaymath} (6)

$\sum_{n=0}^\infty n(n-1)a_nx^{n-2}-\sum_{n=0}^\infty n(n-1)a_nx^n$
$-2x\sum_{n=0}^\infty na_nx^{n-1}+l(l+1)\sum_{n=0}^\infty a_nx^n=0\quad$ (7)
$\sum_{n=2}^\infty n(n-1)a_nx^{n-2}-\sum_{n=0}^\infty n(n-1)a_nx^n$
$ -2\sum_{n=0}^\infty na_nx^n+ l(l+1)\sum_{n=0}^\infty a_nx^n=0\quad$ (8)
$\sum_{n=0}^\infty (n+2)(n+1)a_{n+2}x^n-\sum_{n=0}^\infty n(n-1)a_nx^n$
$ -2\sum_{n=0}^\infty na_nx^n+ l(l+1)\sum_{n=0}^\infty a_nx^n=0\quad$ (9)


\begin{displaymath}
\sum_{n=0}^\infty \{(n+1)(n+2)a_{n+2}+[-n(n-1)-2n+l(l+1)]a_n\} = 0,
\end{displaymath} (10)

so each term must vanish and
\begin{displaymath}
(n+1)(n+2)a_{n+2}-n(n+1)+l(l+1)]a_n = 0
\end{displaymath} (11)


$\displaystyle a_{n+2}$ $\textstyle =$ $\displaystyle {n(n+1)-l(l+1)\over (n+1)(n+2)} \,a_n$  
  $\textstyle =$ $\displaystyle - {[l+(n+1)](l-n)\over (n+1)(n+2)}\, a_n.$ (12)

Therefore,
$\displaystyle a_2$ $\textstyle =$ $\displaystyle -{l(l+1)\over 1\cdot 2} a_0$ (13)
$\displaystyle a_4$ $\textstyle =$ $\displaystyle -{(l-2)(l+3)\over 3\cdot 4} a_2$  
  $\textstyle =$ $\displaystyle (-1)^2 {[(l-2)l][(l+1)(l+3)]\over 1\cdot 2\cdot 3\cdot 4 } a_0$ (14)
$\displaystyle a_6$ $\textstyle =$ $\displaystyle -{(l-4)(l+5)\over 5\cdot 6} a_4$  
  $\textstyle =$ $\displaystyle (-1)^3 {[(l-4)(l-2)l][(l+1)(l+3)(l+5)]\over 1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6} a_0,$  
      (15)

so the Even solution is


\begin{displaymath}
y_1(x) = 1+\sum_{n=1}^\infty (-1)^n {[(l-2n+2)\cdots(l-2)l][(l+1)(l+3)\cdots (l+2n-1)] \over (2n)!} x^{2n}.
\end{displaymath} (16)

Similarly, the Odd solution is


\begin{displaymath}
y_2(x)= x+\sum_{n=1}^\infty(-1)^n{[(l-2n+1)\cdots(l-3)(l-1)][(l+2)(l+4)\cdots(l+2n)\over (2n+1)!}x^{2m+1}.
\end{displaymath} (17)

If $l$ is an Even Integer, the series $y_1$ reduces to a Polynomial of degree $l$ with only Even Powers of $x$ and the series $y_2$ diverges. If $l$ is an Odd Integer, the series $y_2$ reduces to a Polynomial of degree $l$ with only Odd Powers of $x$ and the series $y_1$ diverges. The general solution for an Integer $l$ is given by the Legendre Polynomials

\begin{displaymath}
P_n(x) =c_n\cases{
y_1(x) & for $l$\ even\cr
y_2(x) & for $l$\ odd,\cr}
\end{displaymath} (18)

where $c_n$ is chosen so that $P_n(1) = 1$. If the variable $x$ is replaced by $\cos \theta$, then the Legendre differential equation becomes
\begin{displaymath}
{d^2y\over d\theta^2} + {\cos\theta\over\sin\theta}{dy\over dx} + l(l+1)y = 0,
\end{displaymath} (19)

as is derived for the associated Legendre differential equation with $m=0$.


The associated Legendre differential equation is

\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ \left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0
\end{displaymath} (20)


\begin{displaymath}
(1-x^2) {d^2y\over dx^2} - 2x {dy\over dx}+\left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0.
\end{displaymath} (21)

The solutions to this equation are called the associated Legendre polynomials. Writing $x\equiv\cos\theta$, first establish the identities
\begin{displaymath}
{dy\over dx} = {dy\over d(\cos\theta)} = - {1\over\sin\theta}{dy\over d\theta}
\end{displaymath} (22)


\begin{displaymath}
x{dy\over dx} = -{\cos\theta\over\sin\theta} {dy\over d\theta},
\end{displaymath} (23)


$\displaystyle {d^2y\over dx^2}$ $\textstyle =$ $\displaystyle {1\over\sin\theta} {d\over d\theta}\left({{1\over\sin\theta}{dy\over d\theta}}\right)$  
  $\textstyle =$ $\displaystyle {1\over\sin\theta}\left({-\cos\theta\over\sin^2\theta}\right){dy\over d\theta}+{1\over\sin^2\theta} {d^2y\over d\theta^2},$ (24)

and
\begin{displaymath}
1-x^2 = 1-\cos^2\theta = \sin^2\theta.
\end{displaymath} (25)

Therefore,
$\displaystyle (1-x^2){d^2y\over dx^2}$ $\textstyle =$ $\displaystyle \sin^2\theta {1\over\sin\theta}
\left({-\cos\theta\over\sin^2\theta}\right){dy\over d\theta}+ {1\over\sin^2\theta} {d^2y\over d\theta^2}$  
  $\textstyle =$ $\displaystyle {d^2y\over d\theta^2}-{\cos\theta\over\sin\theta} {dy\over d\theta}.$ (26)

Plugging (22) into (26) and the result back into (21) gives


\begin{displaymath}
\left({{d^2y\over d\theta^2}-{\cos\theta\over\sin\theta} {dy...
...r d\theta}+\left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0
\end{displaymath} (27)


\begin{displaymath}
{d^2y\over d\theta^2} + {\cos\theta\over\sin\theta} {dy\over dx} + \left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0.
\end{displaymath} (28)


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 332, 1972.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26