info prev up next book cdrom email home

Hilbert's Constants

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Extend Hilbert's Inequality by letting $p,q>1$ and

\begin{displaymath}
{1\over p}+{1\over q}\geq 1,
\end{displaymath} (1)

so that
\begin{displaymath}
0<\lambda= 2-{1\over p}-{1\over q}\leq 1.
\end{displaymath} (2)

Levin (1937) and Steckin (1949) showed that


\begin{displaymath}
\sum_{m=1}^\infty \sum_{n=1}^\infty {a_mb_n\over(m+n)^\lambd...
...p}\right]^{1/p} \left[{\sum_{n=1}^\infty (a_n)^q}\right]^{1/q}
\end{displaymath} (3)

and


\begin{displaymath}
\int_0^\infty \int_0^\infty {f(x)g(y)\over (x+y)^\lambda}\,d...
...\right)^{1/p} \left({\int_0^\infty [g(x)]^q\,dx}\right)^{1/q}.
\end{displaymath} (4)

Mitrinovic et al. (1991) indicate that this constant is the best possible.

See also Hilbert's Inequality


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/hilbert/hilbert.html

Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer, 1991.

Steckin, S. B. ``On the Degree of Best Approximation to Continuous Functions.'' Dokl. Akad. Nauk SSSR 65, 135-137, 1949.




© 1996-9 Eric W. Weisstein
1999-05-25