A Figurate Number and 6-Polygonal Number of the form . The first few are 1, 6, 15, 28, 45,
... (Sloane's A000384). The Generating Function of the hexagonal numbers

Every hexagonal number is a Triangular Number since

In 1830, Legendre (1979) proved that every number larger than 1791 is a sum of four hexagonal numbers, and Duke and Schulze-Pillot (1990) improved this to three hexagonal numbers for every sufficiently large integer. The numbers 11 and 26 can only be represented as a sum using the maximum possible of six hexagonal numbers:

**References**

Duke, W. and Schulze-Pillot, R. ``Representations of Integers by Positive Ternary Quadratic Forms and Equidistribution
of Lattice Points on Ellipsoids.'' *Invent. Math.* **99**, 49-57, 1990.

Guy, R. K. ``Sums of Squares.'' §C20 in
*Unsolved Problems in Number Theory, 2nd ed.* New York: Springer-Verlag, pp. 136-138, 1994.

Legendre, A.-M. *Théorie des nombres, 4th ed., 2 vols.* Paris: A. Blanchard, 1979.

Sloane, N. J. A. Sequence
A000384/M4108
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
*The Encyclopedia of Integer Sequences.* San Diego: Academic Press, 1995.

© 1996-9

1999-05-25