info prev up next book cdrom email home


The locus of a point $P$ (or the envelope of a line) fixed in relation to a curve $C$ which slides between fixed curves. For example, if $C$ is a line segment and $P$ a point on the line segment, then $P$ describes an Ellipse when $C$ slides so as to touch two Orthogonal straight Lines. The glissette of the Line Segment $C$ itself is, in this case, an Astroid.

See also Roulette


Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. ed. Cambridge, England: Deighton, Bell & Co., 1890.

Lockwood, E. H. ``Glissettes.'' Ch. 20 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 160-165, 1967.

Yates, R. C. ``Glissettes.'' A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 108-112, 1952.

© 1996-9 Eric W. Weisstein