info prev up next book cdrom email home

Error Propagation

Given a Formula $y = f(x)$ with an Absolute Error in $x$ of $dx$, the Absolute Error is $dy$. The Relative Error is ${dy/y}$. If $x=f(u,v)$, then

\begin{displaymath}
x_i-\bar x = (u_i-\bar u){\partial x\over \partial u}+(v_i-\bar v){\partial x\over \partial v} +\ldots,
\end{displaymath} (1)

so
$\displaystyle {\sigma_x}^2$ $\textstyle \equiv$ $\displaystyle {1\over N-1} \sum_i^N (x_i-\bar x)^2$  
  $\textstyle =$ $\displaystyle {1\over N-1} \sum_i^N \left[{(u_i-\bar u)^2\left({\partial x\over...
...l u}\right)^2+(v_i-\bar v)^2\left({\partial x\over \partial v}\right)^2}\right.$  
  $\textstyle \phantom{=}$ $\displaystyle \left.{\mathop{+}2(u_i-\bar u)(v_i-\bar v)\left({\partial x\over \partial u}\right)\left({\partial x\over \partial v}\right)+ \ldots}\right].$ (2)

The definitions of Variance and Covariance then give
$\displaystyle {\sigma_u}^2$ $\textstyle \equiv$ $\displaystyle {1\over N-1} \sum_{i=1}^N (u_i-\bar u)^2$ (3)
$\displaystyle {\sigma_v}^2$ $\textstyle \equiv$ $\displaystyle {1\over N-1} \sum_{i=1}^N (v_i-\bar v)^2$ (4)
$\displaystyle {\sigma_{uv}}^2$ $\textstyle \equiv$ $\displaystyle {1\over N-1} \sum_{i=1}^N (u_i-\bar u)(v_i-\bar v),$ (5)

so


\begin{displaymath}
{\sigma_x}^2 = {\sigma_u}^2\left({\partial x\over\partial u}...
...tial u}\right)\left({\partial x\over\partial v}\right)+\ldots.
\end{displaymath} (6)

If $u$ and $v$ are uncorrelated, then $\sigma_{uv}=0$ so
\begin{displaymath}
{\sigma_x}^2 = {\sigma_u}^2\left({\partial x\over \partial u}\right)^2+{\sigma_v}^2.
\end{displaymath} (7)


Now consider addition of quantities with errors. For $x=au\pm bv$, $\partial x/\partial u=a$ and $\partial x/\partial v=\pm b$, so

\begin{displaymath}
{\sigma_x}^2=a^2{\sigma_u}^2+b^2{\sigma_v}^2\pm 2ab{\sigma_{uv}}^2.
\end{displaymath} (8)


For division of quantities with $x=\pm au/v$, $\partial x/\partial u=\pm a/v$ and $\partial x/\partial v=\mp au/v^2$, so

\begin{displaymath}
{\sigma_x}^2={a^2\over v^2}{\sigma_u}^2+{a^2u^2\over {\sigma_v}^4}-2{a\over v}{au\over v^2}{\sigma_{uv}}^2.
\end{displaymath} (9)


$\displaystyle \left({\sigma_x\over x}\right)^2$ $\textstyle =$ $\displaystyle {a^2\over v^2} {v^2\over a^2u^2} {\sigma_u}^2 +{a^2u^2\over v^4} ...
...over a^2u^2} -2\left({a\over v}\right)\left({au\over v^2}\right){\sigma_{uv}}^2$  
  $\textstyle =$ $\displaystyle \left({\sigma_u\over u}\right)^2+\left({\sigma_v\over v}\right)^2-2\left({\sigma_{uv}\over u}\right)\left({\sigma_{uv}\over v}\right).$ (10)


For exponentiation of quantities with

\begin{displaymath}
x=a^{\pm bu}=(e^{\ln a})^{\pm bu} = e^{\pm b(\ln a)u},
\end{displaymath} (11)


\begin{displaymath}
{\partial x\over \partial u}=\pm b(\ln a)e^{\pm b\ln au} = \pm b(\ln a)x,
\end{displaymath} (12)

so
\begin{displaymath}
{\sigma_x} = {\sigma_u} b(\ln a)x
\end{displaymath} (13)


\begin{displaymath}
{\sigma_x\over x}=b\ln a\sigma_u.
\end{displaymath} (14)

If $a=e$, then
\begin{displaymath}
{\sigma_x\over x}=b\sigma_u.
\end{displaymath} (15)


For Logarithms of quantities with $x=a\ln(\pm bu)$, $\partial x/\partial u=a(\pm b)/(\pm bu)= a/u$, so

\begin{displaymath}
{\sigma_x}^2={\sigma_u}^2 \left({a^2\over u^2}\right)
\end{displaymath} (16)


\begin{displaymath}
\sigma_x = a{\sigma_u\over u}.
\end{displaymath} (17)


For multiplication with $x=\pm auv$, $\partial x/\partial u=\pm av$ and $\partial x/\partial v=\pm au$, so

\begin{displaymath}
{\sigma_x}^2=a^2v^2{\sigma_u}^2+a^2u^2{\sigma_v}^2+2a^2uv{\sigma_{uv}}^2
\end{displaymath} (18)


$\displaystyle \left({\sigma_x\over x}\right)^2$ $\textstyle =$ $\displaystyle {a^2v^2\over a^2u^2v^2} {\sigma_u}^2+{a^2u^2\over a^2u^2v^2} {\sigma_v}^2+{2a^2uv\over a^2u^2v^2} {\sigma_{uv}}^2$  
  $\textstyle =$ $\displaystyle \left({\sigma_u\over u}\right)^2+\left({\sigma_v\over v}\right)^2+2\left({\sigma_{uv}\over u}\right)\left({\sigma_{uv}\over v}\right).$ (19)


For Powers, with $x=au^{\pm b}$, $\partial x/\partial u=\pm abu^{\pm b-1}= \pm bx/u$, so

\begin{displaymath}
{\sigma_x}^2={\sigma_u}^2{b^2x^2\over u^2}
\end{displaymath} (20)


\begin{displaymath}
{\sigma_x\over x}=b{\sigma_u\over u}.
\end{displaymath} (21)

See also Absolute Error, Percentage Error, Relative Error


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 14, 1972.

Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill, pp. 58-64, 1969.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25