info prev up next book cdrom email home

Diagonal Matrix

A diagonal matrix is a Matrix ${\hbox{\sf A}}$ of the form

\begin{displaymath}
a_{ij} = c_i\delta_{ij},
\end{displaymath} (1)

where $\delta$ is the Kronecker Delta, $c_i$ are constants, and there is no summation over indices. The general diagonal matrix is therefore Square and of the form
\begin{displaymath}
\left[{\matrix{
c_1 & 0 & \cdots & 0\cr
0 & c_2 & \cdots &...
...\vdots & \ddots & \vdots\cr
0 & 0 & \cdots & c_n\cr}}\right].
\end{displaymath} (2)

Given a Matrix equation of the form


\begin{displaymath}
\left[{\matrix{a_{11} & \cdots & a_{1n}\cr \vdots & \ddots &...
...ots & \ddots & \vdots\cr a_{n1} & \cdots & a_{nn}\cr}}\right],
\end{displaymath} (3)

multiply through to obtain
\begin{displaymath}
\left[{\matrix{a_{11}\lambda_1 & \cdots & a_{1n}\lambda_n\cr...
...ots\cr a_{n1}\lambda_n & \cdots & a_{nn}\lambda_n\cr}}\right].
\end{displaymath} (4)

Since in general, $\lambda_i \not= \lambda_j$ for $i\not=j$, this can be true only if off-diagonal components vanish. Therefore, A must be diagonal.


Given a diagonal matrix ${\hbox{\sf T}}$,

\begin{displaymath}
{\hbox{\sf T}}^n=\left[{\matrix{
t_1 & 0 & \cdots & 0\cr
0...
...ts & \ddots & \vdots\cr
0 & 0 & \cdots & {t_k}^n\cr}}\right].
\end{displaymath} (5)

See also Matrix, Triangular Matrix, Tridiagonal Matrix


References

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 181-184 and 217-229, 1985.




© 1996-9 Eric W. Weisstein
1999-05-24