The improvement of the convergence properties of a Series, also called Convergence Acceleration, such
that a Series reaches its limit to within some accuracy with fewer terms than required before.
Convergence improvement can be effected by forming a linear combination with a Series whose sum is
known. Useful sums include
Kummer's transformation takes a convergent series
![\begin{displaymath}
s=\sum_{k=0}^\infty a_k
\end{displaymath}](c2_1683.gif) |
(5) |
and another convergent series
![\begin{displaymath}
c=\sum_{k=0}^\infty c_k
\end{displaymath}](c2_1684.gif) |
(6) |
with known
such that
![\begin{displaymath}
\lim_{k\to\infty} {a_k\over c_k}=\lambda\not=0.
\end{displaymath}](c2_1685.gif) |
(7) |
Then a series with more rapid convergence to the same value is given by
![\begin{displaymath}
s=\lambda c+\sum_{k=0}^\infty \left({1-\lambda{c_k\over a_k}}\right)a_k
\end{displaymath}](c2_1686.gif) |
(8) |
(Abramowitz and Stegun 1972).
Euler's Transform takes a convergent alternating series
![\begin{displaymath}
\sum_{k=0}^\infty (-1)^k a_k=a_0-a_1+a_2-\ldots
\end{displaymath}](c2_1687.gif) |
(9) |
into a series with more rapid convergence to the same value to
![\begin{displaymath}
s=\sum_{k=0}^\infty {(-1)^k\Delta^k a_0\over 2^{k+1}},
\end{displaymath}](c2_1688.gif) |
(10) |
where
![\begin{displaymath}
\Delta^k a_0=\sum_{m=0}^k\equiv (-1)^m{k\choose m} a_{k-m}
\end{displaymath}](c2_1689.gif) |
(11) |
(Abramowitz and Stegun 1972; Beeler et al. 1972, Item 120).
Given a series of the form
![\begin{displaymath}
S=\sum_{n=1}^\infty f\left({1\over n}\right),
\end{displaymath}](c2_1690.gif) |
(12) |
where
is an Analytic at 0 and on the closed unit Disk, and
![\begin{displaymath}
f(z)\vert _{z\to 0}={\mathcal O}(z^2),
\end{displaymath}](c2_1692.gif) |
(13) |
then the series can be rearranged to
where
![\begin{displaymath}
f(z)=\sum_{m=2}^\infty f_mz^m
\end{displaymath}](c2_1695.gif) |
(15) |
is the Maclaurin Series of
and
is the Riemann Zeta Function (Flajolet and Vardi 1996). The
transformed series exhibits geometric convergence. Similarly, if
is Analytic
in
for some Positive Integer
, then
![\begin{displaymath}
S=\sum_{n=1}^{n_0-1}f\left({1\over n}\right)+\sum_{m=2}^\inf...
...\left[{\zeta(m)-{1\over 1^m}-\ldots-{1\over(n_0-1)^m}}\right],
\end{displaymath}](c2_1699.gif) |
(16) |
which converges geometrically (Flajolet and Vardi 1996). (16) can also be used to further accelerate the convergence of
series (14).
See also Euler's Transform, Wilf-Zeilberger Pair
References
Abramowitz, M. and Stegun, C. A. (Eds.).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 16, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 288-289, 1985.
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT
Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
Flajolet, P. and Vardi, I. ``Zeta Function Expansions of Classical Constants.'' Unpublished manuscript. 1996.
http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps.
© 1996-9 Eric W. Weisstein
1999-05-26