info prev up next book cdrom email home

Confocal Paraboloidal Coordinates


\begin{displaymath}
{x^2\over a^2-\lambda} + {y^2\over b^2-\lambda} = z-\lambda
\end{displaymath} (1)


\begin{displaymath}
{x^2\over a^2-\mu} + {y^2\over b^2-\mu} = z-\mu
\end{displaymath} (2)


\begin{displaymath}
{x^2\over a^2-\nu} + {y^2\over b^2-\nu} = z-\nu,
\end{displaymath} (3)

where $\lambda \in (-\infty ,b^2)$, $\mu \in (b^2,a^2)$, and $\nu \in (a^2,\infty)$.
\begin{displaymath}
x^2 = {(a^2-\lambda)(a^2-\mu)(a^2-\nu)\over(b^2-a^2)}
\end{displaymath} (4)


\begin{displaymath}
y^2 = {(b^2-\lambda)(b^2-\mu)(b^2-\nu)\over(a^2-b^2)}
\end{displaymath} (5)


\begin{displaymath}
z = \lambda+\mu+\nu-a^2-b^2.
\end{displaymath} (6)

The Scale Factors are
$\displaystyle {h_\lambda }$ $\textstyle =$ $\displaystyle \sqrt{(\mu-\lambda)(\nu-\lambda)\over 4(a^2-\lambda)(b^2-\lambda)}$ (7)
$\displaystyle {h_\mu}$ $\textstyle =$ $\displaystyle \sqrt{(\nu-\mu)(\lambda-\mu)\over 4(a^2-\mu)(b^2-\mu)}$ (8)
$\displaystyle {h_\nu}$ $\textstyle =$ $\displaystyle \sqrt{(\lambda-\nu)(\mu-\nu)\over 16(a^2-\nu)(b^2-\nu)}.$ (9)

The Laplacian is

${2(a^2+b^2-2\nu)\over(\mu-\nu)(\nu-\lambda)}{\partial\over\partial\nu} +{4(a^2-\nu)(\nu-b^2)\over(\mu-\nu)(\nu-\lambda)}{\partial^2\over\nu^2}$
$ +{2(a^2+b^2-2\mu)\over(\mu-\lambda)(\nu-\mu)}{\partial\over\partial\mu}+{4(a^2-\mu)(\mu-b^2)\over(\mu-\lambda)(\nu-\mu)}{\partial^2\over\partial\mu^2}$
$+{2(2\lambda-a^2-b^2)\over(\mu-\lambda)(\nu-\lambda)}{\partial\over\partial\lam...
...da-b^2)\over(\mu-\lambda)(\nu-\lambda)}{\partial^2\over\partial\lambda^2}.\quad$ (10)
The Helmholtz Differential Equation is Separable.

See also Helmholtz Differential Equation--Confocal Paraboloidal Coordinates


References

Arfken, G. ``Confocal Parabolic Coordinates ($\xi_1$, $\xi_2$, $\xi_3$).'' §2.17 in Mathematical Methods for Physicists, 2nd ed. Orlando, FL: Academic Press, pp. 119-120, 1970.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 664, 1953.




© 1996-9 Eric W. Weisstein
1999-05-26