info prev up next book cdrom email home

Alternating Permutation

An arrangement of the elements $c_1$, ..., $c_n$ such that no element $c_i$ has a magnitude between $c_{i-1}$ and $c_{i+1}$ is called an alternating (or Zigzag) permutation. The determination of the number of alternating permutations for the set of the first $n$ Integers $\{1, 2, \ldots, n\}$ is known as André's Problem. An example of an alternating permutation is (1, 3, 2, 5, 4).

As many alternating permutations among $n$ elements begin by rising as by falling. The magnitude of the $c_n$s does not matter; only the number of them. Let the number of alternating permutations be given by $Z_n=2A_n$. This quantity can then be computed from

2na_n=\sum a_r a_s,
\end{displaymath} (1)

where $r$ and $s$ pass through all Integral numbers such that
\end{displaymath} (2)

$a_0=a_1=1$, and
A_n=n! a_n.
\end{displaymath} (3)

The numbers $A_n$ are sometimes called the Euler Zigzag Numbers, and the first few are given by 1, 1, 1, 2, 5, 16, 61, 272, ... (Sloane's A000111). The Odd-numbered $A_n$s are called Euler Numbers, Secant Numbers, or Zig Numbers, and the Even-numbered ones are sometimes called Tangent Numbers or Zag Numbers.

Curiously enough, the Secant and Tangent Maclaurin Series can be written in terms of the $A_n$s as

$\displaystyle \sec x$ $\textstyle =$ $\displaystyle A_0+A_2 {x^2\over 2!}+A_4 {x^4\over 4!}+\ldots$ (4)
$\displaystyle \tan x$ $\textstyle =$ $\displaystyle A_1x+A_3 {x^3\over 3!}+A_5 {x^5\over 5!}+\ldots,$ (5)

or combining them,

\sec x+\tan x=A_0+A_1 x+A_2 {x^2\over 2!}+A_3 {x^3\over 3!}+A_4 {x^4\over 4!}+A_5 {x^5\over 5!}+\ldots.
\end{displaymath} (6)

See also Entringer Number, Euler Number, Euler Zigzag Number, Secant Number, Seidel-Entringer-Arnold Triangle, Tangent Number


André, D. ``Developments de $\sec x$ et $\tan x$.'' C. R. Acad. Sci. Paris 88, 965-967, 1879.

André, D. ``Memoire sur les permutations alternées.'' J. Math. 7, 167-184, 1881.

Arnold, V. I. ``Bernoulli-Euler Updown Numbers Associated with Function Singularities, Their Combinatorics and Arithmetics.'' Duke Math. J. 63, 537-555, 1991.

Arnold, V. I. ``Snake Calculus and Combinatorics of Bernoulli, Euler, and Springer Numbers for Coxeter Groups.'' Russian Math. Surveys 47, 3-45, 1992.

Bauslaugh, B. and Ruskey, F. ``Generating Alternating Permutations Lexicographically.'' BIT 30, 17-26, 1990.

Conway, J. H. and Guy, R. K. In The Book of Numbers. New York: Springer-Verlag, pp. 110-111, 1996.

Dörrie, H. ``André's Deviation of the Secant and Tangent Series.'' §16 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 64-69, 1965.

Honsberger, R. Mathematical Gems III. Washington, DC: Math. Assoc. Amer., pp. 69-75, 1985.

Knuth, D. E. and Buckholtz, T. J. ``Computation of Tangent, Euler, and Bernoulli Numbers.'' Math. Comput. 21, 663-688, 1967.

Millar, J.; Sloane, N. J. A.; and Young, N. E. ``A New Operation on Sequences: The Boustrophedon Transform.'' J. Combin. Th. Ser. A 76, 44-54, 1996.

Ruskey, F. ``Information of Alternating Permutations.''

Sloane, N. J. A. Sequence A000111/M1492 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' and Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein