info prev up next book cdrom email home

Albers Equal-Area Conic Projection

\begin{figure}\begin{center}\BoxedEPSF{maps/alco.epsf scaled 600}\end{center}\end{figure}

Let $\phi_0$ be the Latitude for the origin of the Cartesian Coordinates and $\lambda_0$ its Longitude. Let $\phi_1$ and $\phi_2$ be the standard parallels. Then

$\displaystyle x$ $\textstyle =$ $\displaystyle \rho\sin\theta$ (1)
$\displaystyle y$ $\textstyle =$ $\displaystyle \rho_0-\rho\cos\theta,$ (2)

where
$\displaystyle \rho$ $\textstyle =$ $\displaystyle {\sqrt{C-2n\sin\phi}\over n}$ (3)
$\displaystyle \theta$ $\textstyle =$ $\displaystyle n(\lambda-\lambda_0)$ (4)
$\displaystyle \rho_0$ $\textstyle =$ $\displaystyle {\sqrt{C-2n\sin\phi_0}\over n}$ (5)
$\displaystyle C$ $\textstyle =$ $\displaystyle \cos^2\phi_1+2n\sin\phi_1$ (6)
$\displaystyle n$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(\sin\phi_1+\sin\phi_2).$ (7)

The inverse Formulas are
$\displaystyle \phi$ $\textstyle =$ $\displaystyle \sin^{-1}\left({C-\rho^2 n^2\over 2n}\right)$ (8)
$\displaystyle \lambda$ $\textstyle =$ $\displaystyle \lambda_0+{\theta\over n},$ (9)

where
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \sqrt{x^2+(\rho_0-y)^2}$ (10)
$\displaystyle \theta$ $\textstyle =$ $\displaystyle \tan^{-1}\left({x\over\rho_0-y}\right).$ (11)


References

Snyder, J. P. Map Projections--A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 98-103, 1987.




© 1996-9 Eric W. Weisstein
1999-05-25