info prev up next book cdrom email home

Abel's Identity

Given a homogeneous linear Second-Order Ordinary Differential Equation,

\begin{displaymath}
y''+P(x)y'+Q(x)y=0,
\end{displaymath} (1)

call the two linearly independent solutions $y_1(x)$ and $y_2(x)$. Then
\begin{displaymath}
y''_1+P(x)y'_1+Q(x)y_1=0
\end{displaymath} (2)


\begin{displaymath}
y''_2+P(x)y'_2+Q(x)y_2=0.
\end{displaymath} (3)

Now, take $y_1 \times$ (3) minus $y_2 \times$ (2),


\begin{displaymath}
y_1[y''_2+P(x)y'_2+Q(x)y_2]-y_2[y''_1+P(x)y'_1+Q(x)y_1]=0
\end{displaymath} (4)


\begin{displaymath}
(y_1y''_2-y_2y''_1)+P(y_1y'_2-y'_1y_2)+Q(y_1y_2-y_1y_2)=0
\end{displaymath} (5)


\begin{displaymath}
(y_1y''_2-y_2y''_1)+P(y_1y'_2-y'_1y_2)=0.
\end{displaymath} (6)

Now, use the definition of the Wronskian and take its Derivative,
$\displaystyle W$ $\textstyle \equiv$ $\displaystyle y_1y'_2-y'_1y_2$ (7)
$\displaystyle W'$ $\textstyle =$ $\displaystyle (y'_1y'_2+y_1y''_2)-(y'_1y'_2+y''_1y_2)$  
  $\textstyle =$ $\displaystyle y_1y''_2-y''_1y_2.$ (8)

Plugging $W$ and $W'$ into (6) gives
\begin{displaymath}
W'+PW = 0.
\end{displaymath} (9)

This can be rearranged to yield
\begin{displaymath}
{dW\over W} = -P(x)\,dx
\end{displaymath} (10)

which can then be directly integrated to
\begin{displaymath}
\ln\left[{W(x)\over W_0}\right]= - \int P(x)\,dx,
\end{displaymath} (11)

where $\ln x$ is the Natural Logarithm. Exponentiation then yields Abel's identity
\begin{displaymath}
W(x) = W_0e^{-\int P(x)\,dx},
\end{displaymath} (12)

where $W_0$ is a constant of integration.

See also Ordinary Differential Equation--Second-Order


References

Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations and Boundary Value Problems, 4th ed. New York: Wiley, pp. 118, 262, 277, and 355, 1986.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25