info prev up next book cdrom email home

Whitney-Mikhlin Extension Constants

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Let $B_n(r)$ be the $n$-D closed Ball of Radius $r>1$ centered at the Origin. A function which is defined on $B(r)$ is called an extension to $B(r)$ of a function $f$ defined on $B(1)$ if

\begin{displaymath}
F(x)=f(x)\forall\ x\in B(1).
\end{displaymath} (1)

Given 2 Banach Spaces of functions defined on $B(1)$ and $B(r)$, find the extension operator from one to the other of minimal norm. Mikhlin (1986) found the best constants $\chi$ such that this condition, corresponding to the Sobolev $W(1,2)$ integral norm, is satisfied,
$\sqrt{\int_{B(1)} \left[{[f(x)]^2+\sum_{j=1}^n\left({\partial f\over\partial x_j}\right)^2}\right]\,dx} $
$ \leq \chi \sqrt{\int_{B(r)} \left[{[F(x)]^2+\sum_{j=1}^n\left({\partial F\over\partial x_j}\right)^2}\right]\,dx}\,.\quad$ (2)
$\chi(1,r)=1$. Let
\begin{displaymath}
\nu={\textstyle{1\over 2}}(n-2),
\end{displaymath} (3)

then for $n>2$,
\begin{displaymath}
\chi(n,r)=\sqrt{1+{I_\nu(1)\over I_{\nu+1}(1)}{I_\nu(r)K_{\n...
...K_\nu(r)I_{\nu+1}(1)\over I_\nu(r)K_\nu(1)-K_\nu(r)I_\nu(1)}},
\end{displaymath} (4)

where $I_\nu(z)$ is a Modified Bessel Function of the First Kind and $K_\nu(z)$ is a Modified Bessel Function of the Second Kind. For $n=2$,

$\chi(2,r)=\max\left\{{\sqrt{1+{I_\nu(1)\over I_{\nu+1}(1)}{I_\nu(r)K_{\nu+1}(1)+K_\nu(r)I_{\nu+1}(1)\over I_\nu(r)K_\nu(1)-K_\nu(r)I_\nu(1)}},}\right.$
$ \left.{\sqrt{1+{I_1(1)\over I_1(1)+I_2(1)}\left[{1+{I_1(r)K_0(1)+K_1(r)I_0(1)\over I_1(r)K_1(1)-K_1(r)I_1(1)}}\right]}}\right\}.\quad$ (5)
For $r\to\infty$,

\begin{displaymath}
\chi(n,\infty)=\sqrt{1+{I_\nu(1)\over I_{\nu+1}(1)}{K_\nu(1)\over K_\nu(1)}},
\end{displaymath} (6)

which is bounded by
\begin{displaymath}
n-1<\chi(n,\infty)<\sqrt{(n-1)^2+4}.
\end{displaymath} (7)

For Odd $n$, the Recurrence Relations
$\displaystyle a_{k+1}$ $\textstyle =$ $\displaystyle a_{k-1}-(2k-1)a_k$ (8)
$\displaystyle b_{k+1}$ $\textstyle =$ $\displaystyle b_{k-1}+(2k-1)b_k$ (9)

with
$\displaystyle a_0$ $\textstyle =$ $\displaystyle e+e^{-1}$ (10)
$\displaystyle a_1$ $\textstyle =$ $\displaystyle e-e^{-1}$ (11)
$\displaystyle b_0$ $\textstyle =$ $\displaystyle e^{-1}$ (12)
$\displaystyle b_1$ $\textstyle =$ $\displaystyle e^{-1}$ (13)

where e is the constant 2.71828..., give
\begin{displaymath}
\chi(2k+1,\infty)=\sqrt{1+{a_k\over a_{k+1}}{b_{k+1}\over b_k}}.
\end{displaymath} (14)

The first few are
$\displaystyle \chi(3,\infty)$ $\textstyle =$ $\displaystyle e$ (15)
$\displaystyle \chi(5,\infty)$ $\textstyle =$ $\displaystyle \sqrt{e^2\over e^2-7}$ (16)
$\displaystyle \chi(7,\infty)$ $\textstyle =$ $\displaystyle \sqrt{2\over 7}\sqrt{e^2\over 37-5e^2}$ (17)
$\displaystyle \chi(9,\infty)$ $\textstyle =$ $\displaystyle {1\over\sqrt{37}}\sqrt{e^2\over 18e^2-133}$ (18)
$\displaystyle \chi(11,\infty)$ $\textstyle =$ $\displaystyle {1\over\sqrt{133}}\sqrt{e^2\over 2431-329e^2}$ (19)
$\displaystyle \chi(13,\infty)$ $\textstyle =$ $\displaystyle \sqrt{2\over 2431}\sqrt{e^2\over 3655e^2-27007}.$ (20)

Similar formulas can be given for even $n$ in terms of $I_0(1)$, $I_1(1)$, $K_0(1)$, $K_1(1)$.


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/mkhln/mkhln.html

Mikhlin, S. G. Constants in Some Inequalities of Analysis. New York: Wiley, 1986.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26