Let be a bounded Coercive bilinear Functional on a Hilbert Space .
Then for every bounded linear Functional on , there exists a unique such that

for all .

**References**

Debnath, L. and Mikusinski, P. *Introduction to Hilbert Spaces with Applications.* San Diego, CA: Academic Press, 1990.

Zeidler, E. *Applied Functional Analysis: Applications to Mathematical Physics.* New York: Springer-Verlag, 1995.

© 1996-9

1999-05-26