info prev up next book cdrom email home

Jacobi-Gauss Quadrature

Also called Jacobi Quadrature or Mehler Quadrature. A Gaussian Quadrature over the interval $[-1,1]$ with Weighting Function $W(x)=(1-x)^\alpha(1+x)^\beta$. The Abscissas for quadrature order $n$ are given by the roots of the Jacobi Polynomials $P_n^{(\alpha,\beta)}(x)$. The weights are

$\displaystyle w_i$ $\textstyle =$ $\displaystyle -{A_{n+1}\gamma_n\over A_n{P_n^{(\alpha,\beta)}}'(x_i)P_{n+1}^{(\alpha,\beta)}(x_i)}$  
  $\textstyle =$ $\displaystyle {A_n\over A_{n-1}}{\gamma_{n-1}\over P_{n-1}^{(\alpha,\beta)}(x_i){P_n^{(\alpha,\beta)}}'(x_i)},$ (1)

where $A_n$ is the Coefficient of $x^n$ in $P_n^{(\alpha,\beta)}(x)$. For Jacobi Polynomials,
\begin{displaymath}
A_n={\Gamma(2n+\alpha+\beta+1)\over 2^n n!\Gamma(n+\alpha+\beta+1)},
\end{displaymath} (2)

where $\Gamma(z)$ is a Gamma Function. Additionally,


\begin{displaymath}
\gamma_n={1\over 2^{2n}(n!)^2} {2^{2n+\alpha+\beta+1}n!\over...
...ma(n+\alpha+1)\Gamma(n+\beta+1)\over\Gamma(n+\alpha+\beta+1)},
\end{displaymath} (3)

so


$\displaystyle w_i$ $\textstyle =$ $\displaystyle {2n+\alpha+\beta+2\over n+\alpha+\beta+1}{\Gamma(n+\alpha+1)\Gamm...
...er\Gamma(n+\alpha+\beta+1)}{2^{2n+\alpha+\beta+1}n!\over V_n'(x_i)V_{n+1}(x_i)}$ (4)
  $\textstyle =$ $\displaystyle {\Gamma(n+\alpha+1)\Gamma(n+\beta+1)\over\Gamma(n+\alpha+\beta+1)}
{2^{2n+\alpha+\beta+1}n!\over(1-{x_i}^2)[V_n'(x_i)]^2},$ (5)

where
\begin{displaymath}
V_m\equiv P_n^{(\alpha,\beta)}(x){2^nn!\over(-1)^n}.
\end{displaymath} (6)

The error term is


\begin{displaymath}
E_n={\Gamma(n+\alpha+1)\Gamma(n+\beta+1)\Gamma(n+\alpha+\bet...
...+\beta+1)]^2}{2^{2n+\alpha+\beta+1}n!\over (2n)!}f^{(2n)}(\xi)
\end{displaymath} (7)

(Hildebrand 1959).


References

Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 331-334, 1956.




© 1996-9 Eric W. Weisstein
1999-05-25