info prev up next book cdrom email home

Herschfeld's Convergence Theorem

For real, Nonnegative terms $x_n$ and Real $p$ with $0<p<1$, the expression

\lim_{k\to\infty} x_0+\left({x_1+\left({x_2+\left({\ldots+(x_k)^p}\right)^p}\right)^p}\right)^p

converges Iff $(x_n)^{p^n}$ is bounded.

See also Continued Square Root


Herschfeld, A. ``On Infinite Radicals.'' Amer. Math. Monthly 42, 419-429, 1935.

Jones, D. J. ``Continued Powers and a Sufficient Condition for Their Convergence.'' Math. Mag. 68, 387-392, 1995.

© 1996-9 Eric W. Weisstein