# Difference between revisions of "ApCoCoA-1:DA.PseudoAutoReduce"

From ApCoCoAWiki

m (replaced <quotes> tag by real quotes) |
|||

(3 intermediate revisions by the same user not shown) | |||

Line 1: | Line 1: | ||

+ | {{Version|1}} | ||

<command> | <command> | ||

<title>DA.PseudoAutoReduce</title> | <title>DA.PseudoAutoReduce</title> | ||

Line 6: | Line 7: | ||

</syntax> | </syntax> | ||

<description> | <description> | ||

− | <ref>DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces | + | <ref>ApCoCoA-1:DA.PseudoAutoReduce|DA.PseudoAutoReduce</ref> returns a pseudo reduced list, i.e., every element of <tt>G</tt> reduces |

to zero with respect to the returned list. | to zero with respect to the returned list. | ||

<itemize> | <itemize> | ||

Line 14: | Line 15: | ||

<example> | <example> | ||

Use QQ[x[1..2,0..20]]; | Use QQ[x[1..2,0..20]]; | ||

− | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO( | + | Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); |

DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]); | DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]); | ||

------------------------------- | ------------------------------- | ||

Line 24: | Line 25: | ||

<type>polynomial</type> | <type>polynomial</type> | ||

</types> | </types> | ||

− | <see>DA.DiffTO</see> | + | <see>ApCoCoA-1:DA.DiffTO|DA.DiffTO</see> |

− | <see>DA.PseudoReduce</see> | + | <see>ApCoCoA-1:DA.PseudoReduce|DA.PseudoReduce</see> |

<key>PseudoAutoReduce</key> | <key>PseudoAutoReduce</key> | ||

Line 31: | Line 32: | ||

<key>diffalg.PseudoAutoReduce</key> | <key>diffalg.PseudoAutoReduce</key> | ||

<key>differential.PseudoAutoReduce</key> | <key>differential.PseudoAutoReduce</key> | ||

− | <wiki-category>Package_diffalg</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_diffalg</wiki-category> |

</command> | </command> |

## Latest revision as of 13:30, 29 October 2020

This article is about a function from ApCoCoA-1. |

## DA.PseudoAutoReduce

Computes a pseudo reduced list of differential polynomials.

### Syntax

DA.PseudoAutoReduce(G:LIST):LIST

### Description

DA.PseudoAutoReduce returns a pseudo reduced list, i.e., every element of `G` reduces

to zero with respect to the returned list.

@param

*G*List of differential polynomials.@return An autoreduced list of differential polynomials.

#### Example

Use QQ[x[1..2,0..20]]; Use QQ[x[1..2,0..20]], Ord(DA.DiffTO("Lex")); DA.PseudoAutoReduce([x[1,1]^4 + x[2,0], x[1,0]^2 + 3x[1,0], x[1,2]^2-x[2,2]^2]); ------------------------------- [x[1,0]^2 + 3x[1,0], x[2,0] + x[1,1]^4] -------------------------------