info prev up next book cdrom email home

Grassmann Coordinates

An $(m+1)$-D Subspace $W$ of an $(n+1)$-D Vector Space $V$ can be specified by an $(m+1)\times(n+1)$ Matrix whose rows are the coordinates of a Basis of $W$. The set of all ${n+1\choose m+1}$ $(m+1)\times(m+1)$ Minors of this Matrix are then called the Grassmann coordinates of $w$ (where ${a\choose b}$ is a Binomial Coefficient).

See also Chow Coordinates


Wilson, W. S.; Chern, S. S.; Abhyankar, S. S.; Lang, S.; and Igusa, J.-I. ``Wei-Liang Chow.'' Not. Amer. Math. Soc. 43, 1117-1124, 1996.

© 1996-9 Eric W. Weisstein