info prev up next book cdrom email home

Gosper Island

\begin{figure}\begin{center}\BoxedEPSF{flowsnake.epsf scaled 700}\end{center}\end{figure}

A modification of the Koch Snowflake which has Fractal Dimension

D={2\ln 3\over\ln 7}=1.12915\ldots.

The term ``Gosper island'' was used by Mandelbrot (1977) because this curve bounds the space filled by the Peano-Gosper Curve; Gosper and Gardner use the term Flowsnake Fractal instead. Gosper islands can Tile the Plane.

\begin{figure}\begin{center}\BoxedEPSF{flowsnake_tiling2.epsf scaled 850}\quad\BoxedEPSF{flowsnake_tiling3.epsf scaled 850}\end{center}\end{figure}

See also Koch Snowflake, Peano-Gosper Curve


Mandelbrot, B. B. Fractals: Form, Chance, & Dimension. San Francisco, CA: W. H. Freeman, Plate 46, 1977.

© 1996-9 Eric W. Weisstein