Denote the
th Derivative
and the
-fold Integral
. Then
![\begin{displaymath}
D^{-1} f(t)=\int_0^t f(\xi)\,d\xi.
\end{displaymath}](f_1931.gif) |
(1) |
Now, if
![\begin{displaymath}
D^{-n} f(t)={1\over(n-1)!} \int_0^t (t-\xi)^{n-1}f(\xi)\,d\xi
\end{displaymath}](f_1932.gif) |
(2) |
is true for
, then
Interchanging the order of integration gives
![\begin{displaymath}
D^{-(n+1)}f(t)={1\over n!}\int_0^t (t-\xi)^nf(\xi)\,d\xi.
\end{displaymath}](f_1936.gif) |
(4) |
But (2) is true for
, so it is also true for all
by Induction. The fractional integral of
can then be defined by
![\begin{displaymath}
D^{-\nu}f(t)={1\over\Gamma(\nu)}\int_0^t (t-\xi)^{\nu-1}f(\xi)\,d\xi,
\end{displaymath}](f_1938.gif) |
(5) |
where
is the Gamma Function.
The fractional integral can only be given in terms of elementary functions for a small number of functions. For
example,
where
is the Et-Function. The fractional derivative of
(if it exists) can be defined by
![\begin{displaymath}
D^\mu f(t)=D^m[D^{-(m-\mu)}f(t)].
\end{displaymath}](f_1945.gif) |
(8) |
An example is
It is always true that, for
,
![\begin{displaymath}
D^{-\mu} D^{-\nu} f(t) = D^{-(\mu+\nu)},
\end{displaymath}](f_1952.gif) |
(11) |
but not always true that
![\begin{displaymath}
D^\mu D^\nu=D^{\mu+\nu}.
\end{displaymath}](f_1953.gif) |
(12) |
See also Derivative, Integral
References
Love, E. R. ``Fractional Derivatives of Imaginary Order.'' J. London Math. Soc. 3, 241-259, 1971.
McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.
Miller, K. S. ``Derivatives of Noninteger Order.'' Math. Mag. 68, 183-192, 1995.
Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.
Spanier, J. and Oldham, K. B. The Fractional Calculus. New York: Academic Press, 1974.
© 1996-9 Eric W. Weisstein
1999-05-26