Denote the th Derivative and the -fold Integral . Then
(1) |
(2) |
(3) |
(4) |
(5) |
The fractional integral can only be given in terms of elementary functions for a small number of functions. For
example,
(6) | |||
(7) |
(8) |
(9) | |||
(10) |
(11) |
(12) |
See also Derivative, Integral
References
Love, E. R. ``Fractional Derivatives of Imaginary Order.'' J. London Math. Soc. 3, 241-259, 1971.
McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.
Miller, K. S. ``Derivatives of Noninteger Order.'' Math. Mag. 68, 183-192, 1995.
Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.
Spanier, J. and Oldham, K. B. The Fractional Calculus. New York: Academic Press, 1974.
© 1996-9 Eric W. Weisstein