info prev up next book cdrom email home

Directional Derivative


\begin{displaymath}
\nabla_{\bf u}f \equiv\nabla f\cdot {{\bf u}\over\vert{\bf u...
... \propto\lim_{h\to 0} {f({\bf x}+h{\bf u})-f({\bf x})\over h}.
\end{displaymath} (1)

$\nabla_{\bf u} f(x_0,y_0,z_0)$ is the rate at which the function $w = f(x,y,z)$ changes at $(x_0,y_0,z_0)$ in the direction ${\bf u}$. Let ${\bf u}$ be a Unit Vector in Cartesian Coordinates, so
\begin{displaymath}
\vert{\bf u}\vert = \sqrt{{u_x}^2+{u_y}^2+{u_z}^2} = 1,
\end{displaymath} (2)

then
\begin{displaymath}
\nabla_{\bf u}f={\partial f\over\partial x}u_x+{\partial f\over\partial y}u_y+{\partial f\over\partial z}u_z.
\end{displaymath} (3)

The directional derivative is often written in the notation
\begin{displaymath}
{d\over ds} \equiv \hat {\bf s}\cdot\nabla
= s_x{\partial\o...
...+s_y{\partial\over\partial y} + s_z {\partial\over\partial z}.
\end{displaymath} (4)




© 1996-9 Eric W. Weisstein
1999-05-24