The 2-1 equation
![\begin{displaymath}
A^6+B^6=C^6
\end{displaymath}](d1_1059.gif) |
(1) |
is a special case of Fermat's Last Theorem with
, and so has no solution. Ekl (1996) has searched and found
no solutions to the 2-2
![\begin{displaymath}
A^6+B^6=C^6+D^6
\end{displaymath}](d1_1061.gif) |
(2) |
with sums less than
.
No solutions are known to the 3-1 or 3-2 equations. However, parametric solutions are known for the 3-3 equation
![\begin{displaymath}
A^6+B^6+C^6=D^6+E^6+F^6
\end{displaymath}](d1_1063.gif) |
(3) |
(Guy 1994, pp. 140 and 142). Known solutions are
![$\displaystyle 3^6+ 19^6 +22^6$](d1_1064.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 10^6+ 15^6+ 23^6$](d1_1065.gif) |
(4) |
![$\displaystyle 36^6+ 37^6+ 67^6$](d1_1066.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 15^6+ 52^6+ 65^6$](d1_1067.gif) |
(5) |
![$\displaystyle 33^6+ 47^6+ 74^6$](d1_1068.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 23^6+ 54^6+ 73^6$](d1_1069.gif) |
(6) |
![$\displaystyle 32^6+ 43^6+ 81^6$](d1_1070.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 3^6+ 55^6+ 80^6$](d1_1071.gif) |
(7) |
![$\displaystyle 37^6+ 50^6+ 81^6$](d1_1072.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 11^6+ 65^6+ 78^6$](d1_1073.gif) |
(8) |
![$\displaystyle 25^6+ 62^6+138^6$](d1_1074.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 82^6+ 92^6+135^6$](d1_1075.gif) |
(9) |
![$\displaystyle 51^6+113^6+136^6$](d1_1076.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 40^6+125^6+129^6$](d1_1077.gif) |
(10) |
![$\displaystyle 71^6+ 92^6+147^6$](d1_1078.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 1^6+132^6+133^6$](d1_1079.gif) |
(11) |
![$\displaystyle 111^6+121^6+230^6$](d1_1080.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 26^6+169^6+225^6$](d1_1081.gif) |
(12) |
![$\displaystyle 75^6+142^6+245^6$](d1_1082.gif) |
![$\textstyle =$](d1_82.gif) |
![$\displaystyle 14^6+163^6+243^6$](d1_1083.gif) |
(13) |
(Rao 1934, Lander et al. 1967).
No solutions are known to the 4-1 or 4-2 equations. The smallest primitive 4-3 solutions are
(Lander et al. 1967). Moessner (1947) gave three parametric solutions to the 4-4 equation. The smallest 4-4 solution is
![\begin{displaymath}
2^6+2^6+9^6+9^6=3^6+5^6+6^6+10^6
\end{displaymath}](d1_1094.gif) |
(19) |
(Rao 1934, Lander et al. 1967). The smallest 4-4-4 solution is
![\begin{displaymath}
1^6+34^6+49^6+111^6=7^6+43^6+69^6+110^6 = 18^6+25^6+77^6+109^6
\end{displaymath}](d1_1095.gif) |
(20) |
(Lander et al. 1967).
No
-1 solutions are known for
(Lander et al. 1967).
No solution to the 5-1 equation is known (Guy 1994, p. 140) or the 5-2 equation.
No solutions are known to the 6-1 or 6-2 equations.
The smallest 7-1 solution is
![\begin{displaymath}
74^6+234^6+402^6+474^6+702^6+894^6+1077^6=1141^6
\end{displaymath}](d1_1097.gif) |
(21) |
(Lander et al. 1967). The smallest 7-2 solution is
![\begin{displaymath}
18^6+22^6+36^6+58^6+69^6+78^6+78^6=56^6+91^6
\end{displaymath}](d1_1098.gif) |
(22) |
(Lander et al. 1967).
The smallest primitive 8-1 solutions are
![\begin{displaymath}
8^6+ 12^6+ 30^6+ 78^6+102^6+138^6+165^6+246^6=251^6
\end{displaymath}](d1_1099.gif) |
(23) |
![\begin{displaymath}
48^6+111^6+156^6+186^6+188^6+228^6+240^6+426^6=431^6
\end{displaymath}](d1_1100.gif) |
(24) |
![\begin{displaymath}
93^6+ 93^6+195^6+197^6+303^6+303^6+303^6+411^6=440^6
\end{displaymath}](d1_1101.gif) |
(25) |
![\begin{displaymath}
219^6+255^6+261^6+267^6+289^6+351^6+351^6+351^6=440^6
\end{displaymath}](d1_1102.gif) |
(26) |
![\begin{displaymath}
12^6+ 66^6+138^6+174^6+212^6+288^6+306^6+441^6=455^6
\end{displaymath}](d1_1103.gif) |
(27) |
![\begin{displaymath}
12^6+ 48^6+222^6+236^6+333^6+384^6+390^6+426^6=493^6
\end{displaymath}](d1_1104.gif) |
(28) |
![\begin{displaymath}
66^6+ 78^6+144^6+228^6+256^6+288^6+435^6+444^6=499^6
\end{displaymath}](d1_1105.gif) |
(29) |
![\begin{displaymath}
16^6+ 24^6+ 60^6+156^6+204^6+276^6+330^6+492^6=502^6
\end{displaymath}](d1_1106.gif) |
(30) |
![\begin{displaymath}
61^6+ 96^6+156^6+228^6+276^6+318^6+354^6+534^6=547^6
\end{displaymath}](d1_1107.gif) |
(31) |
![\begin{displaymath}
170^6+177^6+276^6+312^6+312^6+408^6+450^6+498^6=559^6
\end{displaymath}](d1_1108.gif) |
(32) |
![\begin{displaymath}
60^6+102^6+126^6+261^6+270^6+338^6+354^6+570^6=581^6
\end{displaymath}](d1_1109.gif) |
(33) |
![\begin{displaymath}
57^6+146^6+150^6+360^6+390^6+402^6+444^6+528^6=583^6
\end{displaymath}](d1_1110.gif) |
(34) |
![\begin{displaymath}
33^6+ 72^6+122^6+192^6+204^6+390^6+534^6+534^6=607^6
\end{displaymath}](d1_1111.gif) |
(35) |
![\begin{displaymath}
12^6+ 90^6+114^6+114^6+273^6+306^6+492^6+592^6=623^6
\end{displaymath}](d1_1112.gif) |
(36) |
(Lander et al. 1967). The smallest 8-2 solution is
![\begin{displaymath}
8^6+10^6+12^6+15^6+24^6+30^6+33^6+36^6=35^6+37^6
\end{displaymath}](d1_1113.gif) |
(37) |
(Lander et al. 1967).
The smallest 9-1 solution is
![\begin{displaymath}
1^6+17^6+19^6+22^6+31^6+37^6+37^6+41^6+49^6=54^6
\end{displaymath}](d1_1114.gif) |
(38) |
(Lander et al. 1967). The smallest 9-2 solution is
![\begin{displaymath}
1^6+5^6+5^6+7^6+13^6+13^6+13^6+17^6+19^6=6^6+21^6
\end{displaymath}](d1_1115.gif) |
(39) |
(Lander et al. 1967).
The smallest 10-1 solution is
![\begin{displaymath}
2^6+4^6+7^6+14^6+16^6+26^6+26^6+30^6+32^6+32^6=39^6
\end{displaymath}](d1_1116.gif) |
(40) |
(Lander et al. 1967). The smallest 10-2 solution is
![\begin{displaymath}
1^6+1^6+1^6+4^6+4^6+7^6+9^6+11^6+11^6+11^6=12^6+12^6
\end{displaymath}](d1_1117.gif) |
(41) |
(Lander et al. 1967).
The smallest 11-1 solution is
![\begin{displaymath}
2^6+5^6+5^6+5^6+7^6+7^6+9^6+9^6+10^6+14^6+17^6=18^6
\end{displaymath}](d1_1118.gif) |
(42) |
(Lander et al. 1967).
There is also at least one 16-1 identity,
|
|
|
(43) |
(Martin 1893). Moessner (1959) gave solutions for 16-1, 18-1, 20-1, and 23-1.
References
Ekl, R. L. ``Equal Sums of Four Seventh Powers.'' Math. Comput. 65, 1755-1756, 1996.
Guy, R. K. ``Sums of Like Powers. Euler's Conjecture.'' §D1 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput.
21, 446-459, 1967.
Martin, A. ``On Powers of Numbers Whose Sum is the Same Power of Some Number.'' Quart. J. Math. 26, 225-227, 1893.
Moessner, A. ``On Equal Sums of Like Powers.'' Math. Student 15, 83-88, 1947.
Moessner, A. ``Einige zahlentheoretische Untersuchungen und diophantische Probleme.''
Glasnik Mat.-Fiz. Astron. Drustvo Mat. Fiz. Hrvatske Ser. 2 14, 177-182, 1959.
Rao, S. K. ``On Sums of Sixth Powers.'' J. London Math. Soc. 9, 172-173, 1934.
© 1996-9 Eric W. Weisstein
1999-05-24