info prev up next book cdrom email home

Biquadratic Reciprocity Theorem


\begin{displaymath}
x^4\equiv q\ \left({{\rm mod\ } {p}}\right).
\end{displaymath} (1)

This was solved by Gauß using the Gaussian Integers as
\begin{displaymath}
\left({\pi\over\sigma}\right)_4\left({\sigma\over\pi}\right)_4=(-1)^{[(N(\pi)-1)/4][(N(\sigma)-1)/4]},
\end{displaymath} (2)

where $\pi$ and $\sigma$ are distinct Gaussian Integer Primes,
\begin{displaymath}
N(a+bi)=\sqrt{a^2+b^2}
\end{displaymath} (3)

and $N$ is the norm.


\begin{displaymath}
\left({\alpha\over \pi}\right)_4=\cases{ 1 & if $x^4\equiv \...
...right)$\ is solvable\cr -1, i, {\rm\ or\ } -i & otherwise,\cr}
\end{displaymath} (4)

where solvable means solvable in terms of Gaussian Integers.

See also Reciprocity Theorem




© 1996-9 Eric W. Weisstein
1999-05-26