TECH CENTER

'Quality' water for your plants

by W. Lee Berndt, Ph.D.

Water quality is vital to turf and landscape plants. Four aspects of water govern its quality:

1) the level of dissolved salts;

the level of sodium ion relative to other cations;

3) the level of bicarbonate ion relative to cations; and

 the level of potentially toxic ions like boron. Lab testing is needed to judge the quality of a water. A better grasp of the lab terms will give more meaning to the test results.

Salinity and Soluble Salts. Some waters have high levels of dissolved salts. Irrigating with these waters adds salts to the soil. As the salts accumulate, they cause plant stress. For example, salt buildup in soil causes the water in plant cells to flow back into the soil. This is called crenation. It causes the plants to wilt when

Table 1. Classification of irrigation water based on the level of soluble salts (EC), and the ratio of sodium to calcium plus magnesium (SAR). EC is measured in units called micromhos per centimeter (µmhos cm⁻¹)*.

Class		EC	
of Water	Designation	(µmhos cm-1)	SAR
C1	Low Salinity	< 250	
C2	Medium Salinity	251-750	1222
C3	High Salinity	751-2,250	***
C4	Very High Salinity	> 2,251	
S1	Low Sodium		< 10
S2	Medium Sodium		10.1 - 18
S3	High Sodium		18.1 - 26
S4	Very High Sodium		> 26

* Many labs give the value of EC in millimhos per centimeter (mmhos cm⁻¹), in desci-siemans per meter (dS m⁻¹), or in siemans per meter (S m⁻¹). 750 µmhos cm⁻¹ = 0.750 mmhos cm⁻¹ = 0.750 dS m⁻¹ = 0.075 S m⁻¹.

soil water is adequate. As a result, the plant's energy is diverted away from the normal growth process.

Irrigating with water that is high in sodium may destroy the soil's structure.

The EC (electrical conductivity) of a water is measured to find the level of dissolved salt. The EC of a water varies directly with the salt content. EC is measured in units termed micromhos per centimeter (μ mhos cm⁻¹). Water with an EC of less than 750 μ mhos cm⁻¹ is the most suitable for irrigating turf and landscape plants (see Table 1).

Leaching to Control Salts. Leaching a soil with water will help to prevent the build up of salts. Without leaching, the salts gather in direct proportion to the EC of the water. The LR (leaching requirement) is given by the formula: $LR=EC_{iw} \div EC_{dw}$ where EC_{iw} is the EC of the irrigation water and EC_{dw} is the EC of the drainage water percolating from the bottom of the rootzone. In effect, EC_{dw} is the maximum level of salt the plant of interest can tolerate (see Tables 2 and 3).

continued on page 22

Table 2. Approximate salt tolerance of select grasses and landscape plants.

2,000	3,000	4,000	6,000	8,000	> 8,000
µmhos cm ⁻¹	µmhos cm ⁻¹	µmhos cm ⁻¹	µmhos cm ⁻¹	µmhos cm ⁻¹	µmhos cm ⁻¹
Star Jasmine Oregon Grape Photinia Pyrenees Cotoneaster	Pineapple Guava Chinese Holly Rose, cv. Grenoble Glossy Abelia Southern Yew TulipTree	Kentucky Bluegrass Colonial Bentgrass Red Fescue Annual Bluegrass Centipedegrass Meadow Fescue Heavenly Bamboo Laurustinus Algerian Ivy Chinese Hibiscus Strawberry Tree Crape Myrtle	Glossy Privet Yellow Sage Orchid Tree Southern Magnolia Japanese Boxwood Indian Hawthorne Spreading Juniper Thorny Elaeagnus Pyracantha Cherry Plum Japanese Black Pine Oriental Arborvitae Xylosma	Tall Fescue Perennial Ryegrass Chewings Fescue Blue Gramma Orchardgrass Smoothe Brome Weeping Bottlebrush Oleander European Fan Palm Blue Dracaena Spindle Tree Rosemary Aleppo Pine Sweet Gum	Creeping Bentgrass Bermudagrass Zoysiagrass St. Augustinegrass Western Wheatgrass Tall Wheatgrass Alkaligrass** Seashore Paspalum* Natal Plum Evergreen Pear Bougainvillea Stone Pine Ceniza Brush Cherry White Iceplant*

Landscape Management, October 1995 21

m-1

Table 3.	electrica		.R) as related to EC) of irrigation • •	
EC of In	rigation	Maxim	um Plant Salt To	lerance
Wa	ter	4,000	8,000	12,000
(µmhos	s cm-1)	µmhos cm-1	umhos cm-1	umhos cr

	Extra Leaching Fraction Required (%)		
100	2.5	1.2	0.8
250	6.2	3.1	2.1
750	18.8	9.4	6.2
2,250	56.2	28.1	18.8
5,000		62.5	41.7

Example. Assume the plant has a maximum salt tolerance of 4,000 µmhos cm⁻¹, and assume that the EC of the water utilized for irrigation is measured at 2,250 µmhos cm⁻¹. An extra 56.2% more water would need to be applied with each irrigation to continiously leach salts from the rootzone. LR = EC_{1W} + EC_{dW} where EC_{1W} = EC of the irrigation water to be applied, and EC_{dW} is basically the salt tolerance of the plant of interest.

Table 4. Background information on ions with regard to the quality of irrigation water for turfgrasses.

Ion	Name	mg meq"	meq mg ⁻¹	Acceptable Level for Irrigation Water
Na*	sodium	22.98	0.0435	SAR of 9-10 or less; SAR _{adj} of 3-6 or less; less than 70 ppm or 3 meg L ⁻¹
K.	potassium	39.10	0.0256	
Mg ² *	magnesium	12.16	0.0823	
Ca2+	calcium	20.04	0.0499	
Ni ²⁺	nickel	29.35	0.0340	less than 0.5 ppm or 0.02 meg L ⁻¹
Cu2+	copper	31.77	0.0318	less than 2 ppm or 0.06 meg L ⁻¹
Zn2+	zinc	32.69	0.0306	less than 5 ppm or 0.15 meg L1
Cd ²⁺	cadmium	56.20	0.0178	less than 0.005 ppm or 9.0 x 10 ^s meg L ¹
B3+	boron	3.60	0.2778	less than 1-2 ppm or 0.2-0.6 meg L ⁻¹
CI	chloride	35.45	0.0282	less than 250 ppm or 7 meg L1
HCO3	bicarbonate	61.02	0.0164	RSC of less than 1.25; less than 120-180 ppm or 2-3 meq L ⁻¹
NO ₃	nitrate	62.00	0.0161	
CO32	carbonate	30.01	0.0333	
S042	sulfate	48.03	0.0208	less than 250 ppm or 5.2 meg L ¹
P043-	phosphate	31.66	0.0316	

ppm = parts per million = milligrams substance per liter of water (mg L⁻¹) **meq** = number of milliequivalents of a substance **meq L⁻¹** = number of milliequivalents of substance per liter of water

meq mg⁻¹ = number of milliequivalents of substance per milligram of substance **mg meq**⁻¹ = number of milligrams substance per milliequivalent of substance (ppm)(meq mg⁻¹) = meq L⁻¹ (example: 70 ppm sodium x 0.0435 meg mg⁻¹ = 3 meg L⁻¹)

WATER from page 21

Sodium Ion and the Sodium Hazard. Irrigating with water high in sodium (Na⁺) may destroy the soil's structure. As the Na⁺ is added to the soil, it adsorbs to the exchange sites.

If Na⁺ becomes the dominant cation on the exchange sites, the soil particles tend

lons in a water can affect plants-even be toxic to them.

to repel each other. This is termed dispersion. When a dispersed soil is dried it forms a hard crust. Dispersion hinders the drainage that is vital to plant growth.

The levels of Na⁺ and other ions in a water are measured in a variety of ways. The levels are given in units called meq L⁻¹ (milliequivalents per liter) or in units called ppm (parts per million) (see Table 4). Once the levels of Na⁺, calcium (Ca²⁺), and magnesium (Mg²⁺) are known an SAR (sodium adsorption ratio) can be calculated for a water:

SAR =
$$\frac{Ma^{2+}}{\sqrt{(Ca^{2+} + Mg^{2+}) \div 2}}$$

The SAR is a term that expresses the relative Na^+ hazard of a water. It is a ratio of the level of Na^+ to the levels of the other major cations. Water that has an SAR value of less than 9-10 is the most suitable for irrigating turf and landscape plants (see Table 1). SAR values greater than 9-10 imply that Na^+ levels are excessive.

Bicarbonate Hazard. Irrigating with a water that has a high level of bicarbonate (HCO_{3-}) may also destroy the structure of the soil. When HCO_{3-} is present in a water it can react with the Ca^{2+} and Mg^{2+} to form carbonate salts. This reaction increases the proportion of Na⁺.

The bicarbonate hazard of a water is given by the term RSC (residual sodium carbonate). Once the levels of HCO_{3-} and CO_{3}^{2-} are known the RSC can be calculated: RSC=($HCO_{3-}+CO_{3}^{2+}$)—($Ca^{2+} + Mg^{2+}$)

A water with an RSC of less than 1.25 is safe. A water with an RSC of greater than 2.5 has a high HCO_{3-} hazard. An adjusted value of SAR will also reflect the HCO_{3-} hazard of a water: SAR adj+SAR {1+(8.4—pHc)} where pHc is a calculated value (see Table 5). Water with an SAR_{adj} of less than 6 is safe while water with a value greater than 9 may pose severe prob-

FECH CENTER

lems regarding HCO3-.

Toxic Elements. Certain ions that are present in a water can be directly toxic to plants. Ions in a water that may be toxic to plants include Na⁺, Cl⁻ (chloride), and B³⁺ (boron). Boron is needed for normal growth in very small quantities. Injury can occur to plants if that level is exceeded. Boron can injure lemon trees and American elms when levels in soil water are 0.5 ppm (see Table 6). Summary. Ions that are in a water will affect the health and vigor of landscape plants. High levels of dissolved salts cause plant stress while high levels of Na⁺ and HCO₃_ affect soil structure. Other ions like B³⁺ can be directly toxic to plants. Routinely test a water that is used to care for plants. The results of water testing can make a difference in your plant care practices.

Table 5. Data necessary to calculate pHc and SARadi

Total meq L ⁻¹	pK ₂ · pK _c	pCa².	pHCO3
0.1		4.30	4.00
0.5	2.11	3.60	3.30
1	2.13	3.30	3.00
2	2.16	3.00	2.70
4	2.20	2.70	2.40
	2.23	2.52	2.22
6 8	2.25	2.40	2.10
10	2.27	2.30	2.00
15	2.32	2.12	1.82
20	2.35	2.00	1.70
25	2.38	1.90	1.60
30	2.40	1.82	1.52
35	2.42	1.76	1.46
40	2.44	1.70	1.40
50	2.47	1.60	1.30

Sample calculation: assume water contains 2.0 meq Ca²⁺ per liter, 1.0 meq Mg²⁺ per liter, 3.0 meq Na⁺ per liter, and 5.0 meq HCO₃⁻ per liter. The total cation concentration is 6 meq per liter. Therefore, $pK_2 - pK_c = 2.23$. The value of pCa^{2+} at 2 meq per liter equals 3.00 and the value of pHCO₃ at 5.0 meq per liter equals 2.31. The pHc is the sum of these values, or 7.54. The SAR = 2.45. The SAR_{adi} = 2.45[1+(8.4 - pHc)] = 4.56.

Table 6. Approximate boron tolerance limits of select grasses and landscape plants.

Sensitive	Sensitive	Semi-sensitive	Semi-tolerant
< 0.5 ppm	0.5-1.0 ppm	1.0-2.0 ppm	2.0-4.0 ppm
Oregon Grape	Persimmon	Gladiolus	Bottlebrush
Photinia	Grapefruit	Olive	Date Palm
Xylosma	Avacado	Sweetpea	Carnation
Thorny Elaeagnus	Cherry	Blue Dracaena	California Poppy
Laurustinus	English Walnut	Sunflower	Japanese Boxwood
Wax-leaf Privit	Apple	Marigold	Oleander
Pineapple Guava	Zinnia	Poinsettia	Chinese Hibiscus
Spindle Tree	Pansy	China Aster	Sweetpea
Chinese Holly	Violet	Gardenia	Kentucky Bluegrass
Juniper American Elm Yellow Sage Lemon Blackberry	Larkspur Glossy Abelia Geranium Rosemary Orange	Southern Yew Brush Cherry Ceniza Blue Dracaena	Tolerant 4.0-8.0 ppm Indian Hawthorne Natal Plum

Oxalis

Purple Vetch

SOIL: the source of turf life

The savvy landscape manager knows soil is a medium to support ornamental plant life, a vital component of the ecosystem.

by John Fech, Ph.D., University of Nebraska

• To some, it's nothing more than "dirt" that sticks to their shoes when wet. Others think of soil as something to be swept away and discarded or covered. An engineer may view soil as something to be moved during a construction project.

Good, healthy soil is a dynamic living system with many biological, chemical and physical properties. In landscape soils, one of the most important properties that affects plant growth and vigor is aeration.

Aeration is a measure of the rate at which oxygen is able to move through the soil to the plant roots.

Oxygen movement depends on the soil water content. A well aerated soil is composed of about 50 percent solids, 25 percent water and 25 percent air spaces or voids (Fig. 1). Soils which have less than 25 percent air spaces are considered compacted and limit root growth to some degree.

Compaction can be caused by foot and vehicle traffic, soil texture and maintenance procedures conducted on the site such as irrigation, fertilization and mowing. Heavily trafficked areas are subject to compaction, and the turfgrass growing in compacted sites usually becomes thin and non-vigorous (Fig. 2).

Soils most likely to be compacted are those with a heavy clay content. The percentage of clay, sand and silt in a given soil combine to form the soil's texture. A soil testing laboratory can make the most accurate assessment of a soil's texture. Once the percentage of each component is calculated, soil texture is determined by using a textural triangle (Fig. 3). The continued on page 24