# CAUSES OF LATE WINTER-EARLY SPRING TURFGRASS DAMAGE

#### By J.R. Watson, Vice President, The Toro Company

During late winter-early spring, fluctuating temperatures and waterlogged, partially frozen soil produce conditions that cause the loss of turf. This loss may be the direct or indirect result of one or more of these phenomena. Direct damage or kill of the permanent grass may occur at any point of the freeze — frozen — thaw cycle so characteristic of this season. Indirect injury may result from attacks by disease-producing organisms (mostly snowmold and other low temperature fungi) and by traffic on frozen and partially frozen turfgrass areas.

Turfgrass may be destroyed — at the time it freezes. during the time it's frozen, during the time it's thawing, or after it's thawed and growth has begun. Some killing probably occurs during each of these periods. This cycle of freezing, frozen, thawing may be repeated several times during each winter and early spring. When associated with intermittent growth in late winterearly spring, damage may be severe. Death as the plant freezes happens most often in the late fall-early winter, but may occur after a period of growth (particularly rapid growth) in the spring when a sudden drop in temperature occurs. This is most damaging when the grass plants are in non-hardened condition. Ice crystals form within the cells and this disruption of the protoplasm may cause death. Too, repeated cycles in the spring will exhaust food reserves upon which the plants must draw to initiate growth. For this reason, Poa annua is especially vulnerable.

Death during the time the plant is frozen is unlikely to occur unless it is subjected to traffic. This will seldom occur if a good snow cover exists, which is the case most often during the winter months. However, play during the time period under discussion may cause mechanical damage either by attrition or from pressure which forces the ice crystals through the cells, thereby puncturing them and causing death. Play during time the grass is covered with frost has the same effect.

Death at the time of thawing depends on the amount and the state of the "bound" water within the cell (intra-cellular water). Unless adequate bound water is present in the protoplasm, death may result if thawing is rapid or if inter-cellular water re-enters the cell too rapidly. In the latter case, the cell wall is permeable but the protoplasm is unable to absorb the water. Prolonged cold may be conducive to death because it contributes to brittleness of the protoplasm and, if contact (from traffic) is made, the plant is highly susceptible to damage.

#### **Causes Relating to Traffic**

Grass will initiate growth during the warmer periods of late winter-early spring. If the season is characterized by widely fluctuating temperatures, the grass is vulnerable to the freeze-frozen-thaw growth cycle with its attendent problems. Too, the environment produced is highly conducive to disease development. Thus, this may be the most critical phase of the turf management program facing the golf course superintendent. And, he often finds his turf management programs (and, therefore, himself) in direct conflict with the golfing membership, especially those desirous of playing a few early rounds.

Mechanical injury by traffic on partially frozen or wet soil may be immediately evident (visible) or delayed (invisible). Visible injuries (soil displacement) are the footprints and ruts caused by foot and vehicular traffic — sliding and slipping, walking or rolling — on partially frozen or saturated soil. Invisible injury stems from soil compaction.

Although this type of mechanical damage is not confined to the winter months, soil compaction may be far more damaging during this period than generally recognized. Traffic on partially frozen or wet soil, without the protection of living grass, will exert greater pressure (hence, more compacting force) than during the normal growing season. This results, subsequently, in poor growth and may explain "problem areas" which show up in spring and summer for no apparent reason. Cupping areas are particularly vulnerable in this respect.

Traffic on frosted turf causes the frost crystals to puncture leaf cells and kill the grass. Removal of frost, or preventing play when the grass is frosted, is essential.

Control of traffic during vulnerable periods does not always contribute to harmony between early golfing members and the less enthusiastic golfing and nongolfing members. The responsibility for control rests with the club officials — president, green chairman, superintendent and golf professional.

#### **Causes Relating to Ice Sheets and Ponded Water**

Turfgrasses, although essentially dormant during the winter months, nevertheless, carry on metabolic (growth) activity, particularly respiration. During late winter-early spring, as growth activity increases, the grass may suffocate (a) if difussion of atmospheric and soil gases is reduced or stopped; (b) if excess carbon dioxide accumulates, or (c) if oxygen supplies are reduced to a minimum. Such conditions exist under ice sheets in poorly drained areas where the soil remains saturated for extended periods and, under flooded conditions when ponded or standing water persists. The higher the temperature, the shorter the period of time that the grass can survive these adverse conditions.

Under limited (and rare) conditions, ice sheets and ponded water may act as a lens. When this happens, the sun's rays are magnified to the point where the excessive heat produced may cause a burning or scalding of the turfgrass.

#### **Causes Related to Reduced Water Intake**

Desiccation is a "wilting" phenomenon. Like wilt, which occurs during the normal growing season, desiccation occurs when evapotranspiration exceeds *Continues on page 63* 

water intake. This inability of the roots to absorb water, or for the plant to transport it to or through its system, may result from a shallow, poorly branched root system; diseased vascular system, or, from a reduced or restricted soil water supply. Limited soil moisture may be the result of a "dry" soil (not enough water) or of a frozen or partially frozen soil (water unavailable to the root because of its physical state). Thus, the roots simply cannot take in enough water to offset that being lost by the plant and it "desiccates" or dries up - it wilts. Although more serious during periods when the soil is "on the dry side" or partially frozen, desiccation on high windswept sites may occur at any time. The increased air movement causes excessive transpiration and under limited or reduced soil moisture conditions, the plants may die unless protected.

In late winter-early spring, before the irrigation system has been activated, damage from desiccation may be severe. Water hauled in spray tanks or by other means and applied to critical sites will preclude or minimize loss.

# **Protective Measures**

Techniques and procedures that protect, avoid and correct the damage that occurs in late winter-early spring are well known to and understood by the golf course superintendent. For the most part, protective measures relate to production of a healthy, vigorous grass and to the control, to the extent possible, of the soil- plant environment. When these factors are adversely impacted by anomalous conditions of weather, poor construction, or inadequate equipment and supplies, the responsibility for loss of turfgrass must be shared. **WTT** 

# Herbicides from page 19

is higher than that suggested for use in new grass seedings. DCPA and bromoxynil will be tested more completely next season. We should then know more about their effectiveness for spurge control and safety to various turfgrasses.

### Remember

Although herbicides will control weeds, new weeds may appear in turf from seed in the soil. If turf is neglected, retreatment may be necessary after a year or so. If a dense, vigorously growing stand of grass is maintained, weeds should not be a major problem. Remember, weeds are the result of poor turf rather than the cause. A successful program combines good management with the use of herbicides.

The pesticides listed in this article may be classified "for restricted use only" in accordance with regulations. It is unlawful to use any pesticide for other than the registered use. Read and follow the label. The trade names used in this article are for identification purposes and no product endorsement is implied, nor is discrimination intended against similar materials. The information in this article was presented at the New Jersey Turfgrass Expo '80.



# It's Powerful ... Safe ... Versatile!

Princeton's mighty "Piggyback" has solved many of the problems that have always plagued heavy-duty, field quality material handlers. The remarkable "Piggyback" is light...strong...fast...durable...AND completely stable on the job!

The Piggyback will lift and load up to 4500 lbs. at a time ... turn quickly in its own length ... navigate curbs, logs, and other obstacles with ease...trudge through gravel, sand and mud, but float over normal soil...and then load itself onto your truck for a piggyback ride home at the end of the day.

## How is it Possible?

The Princeton "Piggyback" provides an extremely low ratio of weight to carrying capacity...with complete stability. Stability is achieved by carrying the load weight between the drive wheels instead of in front, as with other fork lifts, and by special hydraulic stabilizer legs. Load is lifted to truck bed height, then rolled over truck bed by a horizontal carriage. Heavy-duty high torque wheel motors allow the "Piggyback" to operate on steep grades or in adverse ground conditions and to drive easily over normal loading area obstructions while fully loaded.

The Piggyback's 28 h.p. Murphy 2-cylinder diesel provides superior power for all adverse operating conditions.



Loaded for Piggyback ride home.

For additional information or demonstration, write, or call collect:

Rodger Osborne, Sales Manager 955 W. Walnut St., Canal Winchester, Ohio 43110 (614) 837-9096

Dealer/Distributor Inquiries Invited



Write 154 on reader service card MARCH 1981/WEEDS TREES & TURF 63