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THESIS ABSTRACT 

 The plant growth regulator trinexapac-ethyl (TE) is widely used on golf course 

putting greens across the US.  Numerous researchers have shown TE applications reduce 

clipping yield and increase turfgrass color, quality, and tiller density on a variety of cool- and 

warm-season turfgrass species.  However, there has been limited research on the duration and 

magnitude of growth suppression on creeping bentgrass (Agrostis stonolifera Hud.) golf 

putting greens.  Duration of TE-induced growth suppression is affected by plant metabolism 

which is strongly related to air temperature.  The objectives of this thesis were to 1) 

investigate the effect of TE on yield of creeping bentgrass golf putting greens, 2) develop a 

growing degree day (GDD) model to predict duration of TE efficacy, and 3) investigate the 

effect of season long growth inhibition on creeping bentgrass nitrogen and phosphorus 

requirements.  A GDD model was calibrated by measuring daily clipping yield following 

multiple TE applications.  Re-application intervals varied and were based on several different 

GDD thresholds, base 0°C.  Re-application of TE every 200 GDD resulted in season-long 

clipping yield suppression and was in contrast to the label directions (four week re-

application interval) which did not result in clipping yield reductions over the course of the 

season.  Application rate had little effect on the duration of clipping suppression and suggests 

that 200 GDD interval is adequate for all practical TE application rates on golf putting 

greens.  The 200 GDD re-application interval sustained color and quality enhancements.  

Repeated TE applications every 200 GDD reduced nitrogen fertility requirements by 30-50% 

compared non-treated creeping bentgrass based on color and quality measurements.  

Trinexapac-ethyl also reduced Mehlich-3 soil test phosphorus critical values on several rating 

days however, the average reduction was less than variation that occurs between sampling 
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days and therefore practically inconsequential.  In conclusion, this research has thoroughly 

investigated the effect of various TE application rate and re-application frequencies on 

creeping bentgrass putting greens.  Re-applying TE every 200 GDD provided season-long 

yield suppression and resulted in increased color and quality allowing for substantially 

decreased nitrogen fertilization.  
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 Chapter One: Trinexapac-ethyl Literature Review 

  

ABSTRACT  

 

 The plant growth regulator trinexapac-ethyl (TE) was originally developed to reduce 

turfgrass mowing requirements.  Additionally, TE has been reported to increase turfgrass color, 

density, and visual quality.  Trinexapac-ethyl influences these turfgrass attributes by inhibiting 

synthesis of the plant hormone gibberellic acid; which initiates cell elongation.  Numerous 

research articles have demonstrated TE suppresses clipping yield of many turfgrass species by 

50% for four weeks.  A notable exception is the creeping bentgrass (Agrostis stolonifera Hud.) 

golf putting greens which are substantially less affected by TE. 

 Trinexapac-ethyl affects clipping yield in two phases, relative yield suppression followed 

by yield enhancement.  Enhancement of color and visual quality occur during the suppression 

phase and dissipate during the yield enhancement phase.  Therefore maintaining relative yield 

suppression is desirable.  Metabolism of TE is directly related to air temperature.  The half life of 

TE in creeping bentgrass was found to be 5.3 days in a growth chamber with air temperature at 

18°C and 3.4 days at 30°C.  Calendar-based TE application intervals are therefore inefficient 

because they do not reflect air temperature and plant metabolism.  Development of a TE 

metabolism model, based on air temperature, would indicate when TE re-applications are 

necessary to maintain yield suppression and sustain color and quality enhancement. 
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LITERATURE REVIEW 

Mowing is the most labor and fuel intensive practice associated with turfgrass 

management.  It has been estimated that 70 to 80% of budget of a low budget golf course is spent 

on mowing.  Therefore, growth reducing chemicals have the potential to significantly reduce 

mowing costs.  Research with various compounds to reduce turfgrass growth rate have been 

sought since the 1940s (Watschke and DiPaola, 1995).  The first compounds, called plant growth 

regulators (PGR), caused growth inhibition by slowing plant cell division.  However applications 

of these PGRs caused turfgrass phytotoxicity which limited their use to low maintenance turf like 

roadsides and other hard to mow areas (Murphy et al., 2005).  Eventually, PGRs with lower 

phytotoxicity were developed.  These products inhibit gibberellic acid (GA) production and can 

safely be applied to turfgrass of any maintenance standard with little detrimental effect on 

turfgrass color or quality (Watschke and DiPaola, 1995).  Trinexapac-ethyl is a GA-inhibiting 

PGR that became commercially available in the US during the early 1990s.  This product quickly 

became used widely on golf course putting greens, tee, fairways, and athletic fields.  In addition 

to growth suppression, TE has been shown to enhance turfgrass color, tiller density, and quality, 

and alter root architecture, carbohydrate concentrations, and nutrient allocation (Ervin and 

Zhang, 2008).   

The rate of plant cell expansion is typically controlled by the plant hormones called 

gibberellins or gibberellic acids (Taiz and Zeiger, 2006).  There are many structural forms of 

compounds classified as gibberellins; however, only gibberellins with particular chemical 

structures increase cell expansion (Taiz and Zeiger, 2006).  In cool season turfgrasses, GA1 

increases cell expansion and growth rate (Reid and Ross, 1991).  GA20 is the inactive precursor 

of GA that undergoes dehydroxylation to form GA1 via 3β-hydroxylase.  This process is 

regulated by 2-oxoglutaric acid inhibition of 3β-hydroxylase (Rademacher, 2000). Trinexapac-
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ethyl (4-[cyclopropyl-α-hydroxy-methylene]-3,5-dioxo-cyclohexane-carbxylic acid ethyl ester) 

is a foliarly absorbed compound that is converted by the plant to trinexapac acid, a structural 

mimic of 2-oxoglutaric acid (Beasley and Branham, 2005).  After conversion, trinexapac acid 

acts in conjunction with 2-oxoglutaric acid to inhibit 3β-hydroxylase conversion of the inactive 

GA20 to the active GA1 form (Rademacher, 2000).  Tan and Qian (2003) showed that TE applied 

at 0.1 kg ha
-1

 reduced GA1 leaf concentrations by 46% while GA20 concentrations increased by 

146% compared to the non-treated Kentucky bluegrass (Poa pratensis).  The reduction in GA1 

corresponded to a 50% reduction in mean weekly clipping yield, providing solid evidence that 

TE inhibits growth rate by reducing GA1 concentration. 

 

Clipping Yield 

Trinexapac-ethyl is currently labeled in the US for use on all commonly grown cool- and 

warm-season turfgrasses.  The Primo Maxx label (Syngenta Co., Greensboro, NC) lists 

numerous application rates dependent upon turfgrass species and maintenance standards (i.e. golf 

course putting greens and fairways).  These application rates are stated to suppress clipping yield 

by 50% for four weeks.  However, the label also states that application rate and frequency may 

need adjusting depending on management practices and environmental conditions.  Such 

adjustment of TE application rate is difficult because confirmation of actual yield reductions in 

the field is not easily accomplished.  Instead, turfgrass managers rely on researchers across the 

country to investigate the magnitude and duration of growth suppression caused by TE on 

various grasses (Table 1.1).  Johnson (1994) first demonstrated TE induced growth suppression 

on hybrid and common bermudagrass.  He demonstrated that monthly TE applications reduced 

the number of mowing applications required during a growing season by 30%.  For a majority of 

turfgrass species the labeled application rate suppresses yield by 50% for four weeks (Table 1.1).  
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The notable exception is creeping bentgrass maintained at putting green mowing height.  

Interestingly, golf course putting greens routinely receive multiple TE applications.  McCullough 

et al. (2006b) showed that TE-treated creeping bentgrass grown in the south-eastern US 

experienced a 20% decrease in yield which lasted for two weeks at the labeled application rate.  .  

In 2007, McCullough et al. reported the effects of TE application rate and re-application 

frequency on a creeping bentgrass putting green during spring in South Carolina.  The TE 

treatments consisted of labeled rate (0.05 kg a.i. ha
-1

) applied every three weeks, 2/3 labeled rate 

applied biweekly, and 1/3 labeled rate applied weekly.  Clipping yield reductions ranged from 0 

to 40% during the experiment.  Application rate did not affect the magnitude of growth 

suppression, but more frequent application intervals reduced daily clipping yield fluctuations 

compared to the control.  This is in contrast to a ‘Tifway’ bermudagrass putting green that 

maintained 55% yield reduction for four weeks in that same study.  It is unfortunate that this 

experiment was terminated prior to warmer summer months.  To date, no one has measured the 

effect TE application rate and interval has on creeping bentgrass yield clipping yield during an 

entire growing season. 

TE alters growth rate in two distinct phases.  Fagerness and Yelverton (2000) described a 

period of enhanced clipping yield following growth suppression called ‘post-inhibition growth 

enhancement’ in comparison to non-treated bermudagrass.  This growth response will be 

hereafter referred to as the rebound phase of growth regulation and has been observed with other 

turfgrass species including creeping bentgrass and Kentucky bluegrass (Beasley and Branham, 

2005).  Researchers have speculated that the rebound phase is caused by an accumulation of total 

non-structural carbohydrates during the suppression phase which enhances clipping yield during 

rebound (Ervin and Zhang, 2008).  However, based on the findings of Tan and Qian (2003), 
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another reasonable hypothesis is that the rebound phase is a result of GA20 accumulation during 

the suppression phases which is converted to GA1 after TE has been metabolized. 
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Table 1.1.   The influence of TE application rate and re-application frequency on magnitude and 

duration of growth suppression in various turfgrass species. 

Turfgrass Species and 

Mowing Height 

Application 

Rate 

Re-application 

Frequency 

Growth 

Suppression 

Approximate 

Duration of 

Growth 

Suppression 

Reference 

Common name; mm kg a.i. ha
-1 

Weeks % of control Weeks  

Creeping bentgrass; 3.2 0.05 4 20% 2 
McCullough et 

al., 2006b 

Creeping bentgrass; 3.2 
0.02, 0.03, 

0.05 
1, 2, 3 20-40% 3 

McCullough et 

al., 2007 

Kentucky bluegrass; 30 0.05 4-6 20% 4-6 
Stier and 

Rodgers, 2001 

Kentucky bluegrass, 35 0.05 4 50% 4 
Tan and Qian, 

2003 

Kentucky bluegrass; 32 
0.14, 0.29, 

0.58 
none 44-73% 4-5† 

Beasley and 

Branahm., 

2007 

Rough bluegrass; 80 0.29 6 55-80% 6 
Gardner and 

Wherley, 2005 

Sheep fescue; 80 0.29 6 35-50% 6 
Gardner and 

Wherley, 2005 

St. Augustinegrass; 75 0.14, 0.29 2, 4 50% 4 
McCarty et al., 

2004 

Supina bluegrass; 30 0.05 4-6 60% 4-6 
Stier and 

Rodgers, 2001 

Tall fescue; 38 0.29 none 44-77% 4 
Richie et al., 

2001 

Tall fescue; 80 0.29 6 58-76% 6 
Gardner and 

Wherley, 2005 

‘TifEagle’ Bermudagrass; 

3.2 
0.05 4 60% 3 

McCullough et 

al., 2007 

‘Tifway’ 

 Bermudagrass; 16 
0.07, 0.11  4 60% 4 

Fagerness and 

Yelverton, 

2000 

‘Tifway’  

Bermudagrass; 25 
0.11 4 50% 4 

Fagerness et 

al., 2004 

Zoysiagrass; 12 
0.05, 0.10, 

0.19 
4, 8, 12 25, 27, 0% 4-6 

Qian and 

Engelke, 1999 

† Duration dependent on summer or fall season 
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Turfgrass Carbohydrates 

Han et al. (1998, 2004) that total nonstructural carbohydrate concentrations (TNC) 

increased in the verdure of creeping bentgrass two weeks after initial TE application.  Elevated 

TNC levels then declined 4 to 16 weeks after TE application.  A similar phenomenon occurred in 

hybrid bermudagrass after sequential TE applications (Waltz and Whitwell, 2005).  Richie et al. 

(2001) stated in the title of their publication that there was no increase in TNC in tall fescue 6 -7 

weeks after a single TE application; this result is not surprising based on the findings of Han et 

al. (1998, 2004).  Temporal variability of TNC concentrations are likely result of the suppression 

and rebound growth phases.  Increased TNC concentration in the plant two weeks after TE 

application coincides with yield suppression and is supported by Table 1.1.  As turfgrass growth 

rate increases during the rebound phase, TNC concentrations diminish as a result of increased 

growth rate.   

Trinexapac-ethyl does not alter photosynthetic production in both warm- and cool-season 

grasses (Qian et al., 1998; Steinke and Stier, 2003).  Heckman et al. (2001) showed that TE may 

suppress mitochondrial respiration.  Additionally, TE applications increased cell cytokinin 

content which is also known to suppress respiration (Ervin and Zhang, 2008; Mok and Mok, 

1994).  Decreased respiration rate following TE applications reduced the sod roll temperature 

because heat accumulation is directly attributed to plant respiration (Heckman et al., 2001).  

Suppression of respiration in conjunction with maintained photosynthetic rate would cause 

increased net photosynthesis (Ervin and Zhang, 2008).  Therefore, sustaining yield suppression 

with more frequent TE applications may sustain increased net photosynthesis and result in higher 

TNC concentration. 
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Turfgrass Color, Quality, and Density 

In addition to decreased clipping yield, TE applications have been shown to increase 

turfgrass visual quality, color, and shoot density (Ervin and Zhang, 2008).  Decreased GA1  

concentration causes reduced leaf cell length, increased mesophyll cell density, and increased 

chlorophyll concentration which causes increased turfgrass color (Ervin and Koski, 2001b; Stier 

and Rodgers, 2001; Bunnell et al., 2005) .  Multiple TE applications have also increased 

turfgrass tiller density and leaf area (Ervin and Koski, 1998; Beasley and Branham, 2007).  

Turfgrass quality enhancements have been positively correlated with TE applications on many 

grass species (Ervin and Koski, 2001b; Goss et al., 2002; Steinke and Stier, 2003).  Greater 

increases in turfgrass color are usually associated with increased plant growth regulator 

application rates and re-application frequency (Stier et al., 1999; Qian and Engelke, 1999).  

Visual turfgrass quality is a rating frequently used by turfgrass researchers that integrates 

numerous turfgrass characteristics including color, uniformity, texture, and density (Skogley & 

Sawyer, 1992).  Increased turfgrass quality following TE applications is most likely a function of 

increased color and tiller density.  Repeated TE applications typically enhanced turfgrass color, 

quality, and tiller density four to eight weeks after initial TE application (McCullough et al., 

2006b).  

 

Root Architecture and Nutrient Uptake 

The effect of TE on rooting is not as evident as enhancements in color or quality.  

Generally, few significant differences in root mass or length have been reported during field 

experiments with TE for both warm and cool season grasses ( Ervin and Koski, 2001a; Fagerness 

and Yelverton, 2001; Goss et al., 2002; Fagerness et al., 2004; Wherley and Sinclair, 2009).  
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Two notable exceptions include Bingaman et al. (2001) and Qian and Engelke (1999) who found 

TE increased rooting strength in transplanted Kentucky bluegrass sod, and turfgrass root mass 

was increased by 50-60% in shade.  More commonly, TE is found to decrease root to shoot ratio 

because tiller density is increased with no effect on turfgrass rooting (Goss et al., 2002; Beasley 

et al., 2005).  Greenhouse experiments with both warm- and cool-season turfgrass have observed 

changes in root architecture following TE application (Beasley et al.; 2005; McCullough et al., 

2005; McCullough et al., 2006a).  Kentucky bluegrass grown hydroponically had increased root 

diameter and root surface area following TE application (Beasley et al., 2005).  Increased tiller 

density in that study resulted in no change in Kentucky bluegrass root surface area to shoot ratio, 

and there was no effect on root length (Beasley et al., 2005).  Hybrid bermudagrass root mass 

was found to increase 23-43% after sequential TE applications in a greenhouse (McCullough et 

al., 2005; McCullough et al., 2006a).  However, increased hybrid bermudagrass root mass has 

not yet been observed under field conditions. 

 

Trinexapac-ethyl Absorption, Translocations, and Metabolism 

Fagerness and Penner (1998a) used 
14 

C labeled TE to investigate absorption and 

translocation within Kentucky bluegrass.  The plant base, crown and leave sheaths, absorbed 

80% total applied product within the first hour with maximum absorption (90%) after eight 

hours.  Leaf blades absorbed TE 60% of applied TE after 24 hours with 55% absorbed in the first 

eight hours.  Roots absorbed a negligible amount of TE during the experiment.  They concluded 

that TE is both xylem and phloem mobile although a majority of the TE was translocated to turf 

foliage. 

Fagerness and Penner (1998b) also investigated TE efficacy under different spray 

parameters on Kentucky bluegrass and creeping bentgrass in a greenhouse.  They found the 
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growth suppression responded linearly with application rate and that species responded 

differently with maximum regulation occurring 2-3 weeks after TE application regardless of 

application rate.  Sprayer application volume and ultraviolet degradation had a minimal effect on 

growth inhibition.  Mowing height had an effect on clipping suppression as the high height of cut 

experienced greater relative growth inhibition.  

Once in the plant, TE, is metabolized by the series of enzymatic processes (Eerd et al., 

2003).  Organic pesticides are metabolized in three phases (Hatzios, 1991; Shimabukuro, 1985).  

During Phase I metabolism, pesticides are transformed from parent compound to primary 

metabolites through processes including oxidation, reduction, and hydrolysis.  During Phase II, 

the pesticides are conjugated with sugars, amino acids, or glutathione and are stored in cell 

organelles before further metabolism to secondary conjugates in Phase III.  Toxicity and efficacy 

are reduced from one phase to the next (Eerd et al., 2003).  These processes are enzyme mediated 

reactions and are therefore subject to Michaelis-Menten kinetics (Taiz and Zeiger, 2006).   

Researchers have shown rate of metabolism is related to organism mass and increases 

exponentially with temperature in all living organisms (Hemmingsen, 1960; Kleiber, 1932).  

Traditionally this relationship is generally described as the Q10 and is only valid across a small 

temperature range at which a majority of biological organisms functions; [Q10]
T/10

(Gillooly et al., 

2001).  More recently the idea of universal temperature dependence is used to describe rate of 

biological processes (Gillooly et al., 2001).  This formula relates the Boltzmann factor and body 

mass to more accurately predict metabolic rate; B ~ M
3/4

e
-
 
Ei /kT

 where Ei is activation energy, T is 

temperature (°K) and k is the Boltzmann constant.  This formula can remove 15% of the error in 

the Q10 across the biologically relevant temperature range of 0-40°C and is universal for all 

living organisms (Gillooly et al., 2001). 
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With knowledge of how temperature affects organism metabolism it’s illogical to think 

that calendar based re-application intervals are efficient.  For example, the Primo Maxx label 

(trade name for a commonly used TE product) states that the 0.05 kg a.i. ha
-1

 application rate will 

suppress bentgrass putting green yield for four weeks.  However, data in Table 1.1 indicates that 

the duration of suppression is typically much shorter.  Lickfeldt et al. (2001) found decreased TE 

efficacy as the temperatures increased into summer.  A similar effect was seen in hybrid 

bermudagrass during fall (Fagerness et al., 2002).  As the daily average air temperature 

decreased the duration and magnitude of the suppression period increased.  McCullough et al. 

(2007) indicated that weekly application of TE provided more consistent growth suppression 

compared to bi- and tri-weekly applications when the total annual amount was constant across all 

application intervals on a creeping bentgrass putting green.   

Beasley and Branham (2005) quantified TE half lives in Kentucky bluegrass and creeping 

bentgrass.  Each species was treated with TE and placed in growth chambers set to constant air 

temperatures of 18 or 30°C.  Plants were then harvested after different amounts of time for each 

specific temperature for trinexapac acid quantification with HPLC-UV.  They found the half live 

of TE in creeping bentgrass to be 6.4 and 3.1 days for the 18 and 30°C growth chambers, 

respectively.  The half lives at 18 and 30°C were 5.3 and 3.4 days for Kentucky bluegrass, 

respectively.  A two year field study was also conducted with similar findings in Kentucky 

bluegrass during the summer (Beasley et al., 2007).  The authors found that increased application 

rate had little effect on magnitude or duration of the suppression phase.   

Rate of TE metabolism is controlled to a greater extent by temperature and not UV 

degradation (Beasley and Branham, 2005; Fagerness and Penner 1998b).  A logical step forward 

with this research was to develop a model that used air temperature to optimize TE re-

applications.  The creation of such as model could have profound impacts on turfgrass growth 
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and development.  It would provide turfgrass managers a tool that could be used to predict both 

magnitude of growth suppression and when TE would need to be re-applied to maintain the 

clipping suppression phase.  Implications of sustained yield suppression possibly include 

increased TNC content, color, quality and tiller density.  Additionally, sustained yield inhibition 

would reduce nutrient removal and nutrient demand and may reduce fertility requirements.   
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