

Pathological Pointers CAMPUS DOLLAR SPOT TESTS

by Ward C. Stienstra, Extension Plant Pathologist Dept. of Plant Pathology, University of Minnesota

The dollar spot epidemic did not start on campus as early in 1982; disease symptoms were about one month later than the 1981 season. This may be due to the change in the chemical approach to dollar spot control and the level of control at the end of the 1981 season. In 1980 and 1981 no treatments were applied until symptoms were present and then the disease had a good start. Each year after 1980 treatment application began earlier $6 / 23 / 81$ and $6 / 7 / 82$. While in 1980 the first application was $7 / 29$. This observation, delayed symptom development, while somewhat dependent on the enviornment also serves to remind us about inoculum pressure. This concept can be reduced to the number of infective units in the area. If more infective units, i.e. propagales are present disease pressure is higher and disease symptom level is greater and/or starts earlier. The amount of disease pressure in 1980 and 1981 was greater than the corrective pressure of contact fungicides, i.e. Actidione + Daconil and even that of the systemics at low rates. The Golf Course Superintendent has the tendency to choose the best product from tests like this and use it in his disease control program. While this may insure a successful program, products other than the best may also perform well under your disease pressure conditions. Careful attention to product selection for your disease conditions may save you fungicide dollars.

In the 1982 results please note the significant change in RP26019 performance. This is, I believe due to using a new product. The supply I used in 1980 and 1981 was old material. It was stored in a heated building, under dry conditions yet activity was lost. I can't explain what happened but when a new supply of RP26019 was used the results were excellent at either the 1 oz or 2 oz rate applied every 14 days.

The results from this test reflect control of dollar spot under a non-use condition and adequate to low fertility programs. The plot area does have significant thatch build-up which should favor disease development and the plot has no history of systemic fungicide resistance. All materials were applied in 5 gal water/1000 sq ft with two passes over the plot area when applying fungicide. Pressure in the tank is about 45 to 50 PSI but the operating pressure at the boom is at least $1 / 2$ the tank pressure. This is a low pressurereduced drift situation.

Another study compared Daconil F and Ciba Geigy 64250 (Banner), a flowable and a liquid (ec) at $4,2+1 \mathrm{gal/1000} \mathrm{sq} \mathrm{ft}$. The results are no different from the $5 \mathrm{gal/1000} \mathrm{sq} \mathrm{ft}$ plots. Substantial saving can result when using low gallonage treatments. If you have not reduced water volumes for summer foliar problems, or have, may I suggest that you do but test your sprayer first. Operating pressure and nozzel placement is much more critical under low volume treatments. Nozzel over-lap and wind effects are greater when applying less water. Chemical burn potential is also greater when applying products in a more concentrated form. This may become even a greater problem with EC formulations or tank mixes of two products.

SEE STATISTICAL CHARTS ON PAGES 8 \& 9

1982

| Actidione TGF 2 OZ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -- | 4 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Daconil F 3 Fl OZ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -- | 0 | 0 | 0 |

Above Treatment applied

1982	T	T	T	T	T	T	T	T	T	T	--	T	T	0
Banner 0.5 Fl oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0
Banner 1.0 Fl oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0
RP26019 1 oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0
RP26019 2 oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0
Tersan 1991 1 oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0
Vorlan 2 oz	0	0	0	0	0	0	0	0	0	0	--	0	0	0

Above Treatment applied

Bayleton	0.5	oz	0	0	0	0	0	0	0	0	0	0	--	1	0	0

Bayleton 1.0 oz
Bayleton 2.0 oz

0	0	0	0	0	0	0	0	0	0	--	0	0	0
0	0	0	0	0	0	0	0	0	0	--	0	0	0

Above Treatment applied

DOLLAR SPOT - WATER VOLUME STUDY
TRERAMENT

Daconil F 3 Fl oz

in 4 gal	0	0	0	0	0	0	0	0	0	0	-	0	0	0
in 2 gal	0	0	0	0	0	0	0	0	0	0	-	0	0	1
in 1 gal	0	0	0	0	0	0	0	0	0	0	-	0	0	0

Banner 1 Fl oz

in 4 gal	0	0	0	0	0	0	0	0	0	0	-	0	0	0
in 2 gal	0	0	0	0	0	0	0	0	1	1	-	0	0	0
in 1 gal	0	0	0	0	0	0	0	0	0	0	-	0	0	0

Above Treatments applied $T-T-T-T-T \quad T$
$\begin{array}{lllllllllllllllllll}\text { Check } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 10 & - & 72 & 68 & 84\end{array}$

