THE TORO MULTI PRO[®] 5800 SPRAYER Redefining Accuracy and Precision

Cleanload[™] Eductor Kit

This on-board mixing station incorporates a venturi system and allows rapid and safe loading of any chemical without the need to pre-mix into a slurry.

Pro Control[™] XP

Automatically and instantaneously calibrates flow based on changes in ground speed to maintain an even and accurate spray application rate.

300 Gallon Tank

Smooth design prevents chemical build-up in dead spots and offset fill well provides easy access.

30 Gallon Fresh Water Rinse Kit

Nested behind the main tank, this system includes a separate electric pump, plumbing and dual rinse nozzles with an on-board capacity for three 10 gallon rinse cycles.

Six-Diaphragm Pump

An industry first! Produces up to twice the flow to simultaneously achieve higher spray volumes and aggressive agitation needs.

Count on it,

www.toro.com/multipro5800

Solutions & Supplies for the Green Industry

COMMERCIAL EQUIPMENT SALES

Derek Kastenschmidt 414-313-5260 Mark Robel 414-313-5296 • Scott Neary 608-220-6593 Scott Thompson 715-573-3602 • Dale Marach 920-470-0973

www.reinders.com

TURFGRASS DIAGNOSTIC LAB

Snow Mold, Quality, and Color Ratings Recorded on April 10th, 2011 at Sentryworld GC

Treatment	Rate	Timing ^a	Dis Severity ^b	Quality ^c	Color ^d
1 Non treated Control			74.8 a-e	2.3 I-o	0.437 ABC
6 V-10190	0.7 FL OZ/M	Late	88.8 abc	1.8 no	0.415 C
7 Tourney	0.37 OZ/M	Late	7.5 rst	5.5 d-h	0.614 b-k
3336 Plus	4.0 FL OZ/M	Late			
8 Velista	0.7 OZ/M	Late	42.5 j-n	3.8 ijk	0.532 p-w
9 Velista	0.7 OZ/M	Late	6.8 rst	5.8 c-g	0.600 b-o
Daconil Ultrex	5.0 OZ/M	Late			
Chipco 26GT	4.0 FL OZ/M	Late			
10 Velista	0.7 OZ/M	Late	3.0 st	6.5 a-e	0.613 b-k
Daconil Ultrex	5.0 OZ/M	Late			
Heritage	0.7 OZ/M	Late			
11 Velista	0.7 OZ/M	Late	3.8 st	6.3 a-f	0.603 b-o
Daconil Ultrex	5.0 OZ/M	Late			
Banner MAXX	2 FL OZ/M	Late			
12 Velista	0.7 OZ/M	Late	3.5 st	6.0 b-f	0.608 b-m
Daconil Ultrex	5.0 OZ/M	Late			
3336 Plus	2.0 FL OZ/M	Late			
13 Velista	0.7 OZ/M	Late	7.5 rst	6.0 b-f	0.596 c-o
Daconil Ultrex	5.0 OZ/M	Late			
14 Velista	0.7 OZ/M	Late	2.5 st	6.5 a-e	0.597 b-o
Medallion	0.25 OZ/M	Late			
Banner MAXX	2.0 FL OZ/M	Late			
15 Insignia SC	0.7 FL OZ/M	Late	3.0 st	6.3 a-f	0.615 b-k
Trinity	1.0 FL OZ/M	Late			
Daconil Ultrex	3.2 OZ/M	Late			
16 Insignia SC	0.54 FL OZ/M	Late	3.8 st	6.3 a-f	0.603 b-o
Trinity	1.0 FL OZ/M	Late			
Daconil Ultrex	3.2 OZ/M	Late			
17 Curalan EG	1.0 OZ/M	Early	0.5 t	6.8 a-d	0.606 b-n
Daconil Ultrex	3.2 OZ/M	Early			
Insignia SC	0.54 FL OZ/M	Late			
Trinity	1.0 FL OZ/M	Late			
Daconil Ultrex	3.2 OZ/M	Late			
18 Honor	0.84 OZ/M	Late	0.0 t	6.8 a-d	0.600 b-o
Trinity	1.0 FL OZ/M	Late			
Daconil Ultrex	3.2 OZ/M	Late			
19 Interface	5.0 FL OZ/M	Late	13.8 p-t	5.5 d-h	0.578 i-s
20 Interface	4.0 FL OZ/M	Late	4.3 st	6.3 a-f	0.596 c-p
Daconil Ultrex	3.2 OZ/M	Late			
21 Interface	6.0 FL OZ/M	Late	1.8 st	6.5 a-e	0.613 b-l
Triton FLO	0.85 FL OZ/M	Late			
22 Interface	5.0 FL OZ/M	Late	0.0 t	7 abc	0.639 a-i
Triton FLO	0.85 FL OZ/M	Late			
23 Interface	4.0 FL OZ/M	Late	0.0 t	7.3 ab	0.630 a-j
Triton FLO	0.85 FL OZ/M	Late			
Means followed by same	letter do not signific	antly differ (F	e.05, Waller-Duncan)	
a Combrond lots from a lot of	reating anto ware any	lind on Oat	10th 0010 and Nave (22 rd 2010 ream	ath also

^aEarly and late fungicide treatments were applied on Oct. 19th, 2010 and Nov. 23rd, 2010, respectively ^bMean % diseased area

^cQuality was visually rated on a scale of 1-9 where 1 = completely dead, 6 = acceptable, 9 = dark green ^dColor was rated using a GreenSeeker NDVI Turf Color Meter from Ntech Industries®

12

TURFGRASS DIAGNOSTIC LAB

Snow Mold, Quality, and Color Ratings Recorded on April 10th, 2011 at Sentryworld GC

Treatment	Rate	Timing ^a	Dis severity ^b	Quality ^c	Color ^d
24 Interface	3.0 FL OZ/M	Late	6.0 st	5.8 c-g	0.600 b-o
Triton FLO	0.5 FL OZ/M	Late		-	
25 Reserve	4.5 FL OZ/M	Late	3.0 st	6.3 a-f	0.597 c-o
Compass	0.25 OZ/M	Late			
26 Reserve	4.5 FL OZ/M	Late	0.5 t	6.8 a-d	0.610 b-m
Interface	4.0 FL OZ/M	Late			
27 Tartan	2.0 FL OZ/M	Late	7.5 rst	5.8 c-g	0.622 a-k
Daconil Ultrex	5.0 OZ/M	Late			
28 QP TM/C	6.0 OZ/M	Late	0.0 t	6.5 a-e	0.602 b-o
QP lpro	4.0 FL OZ/M	Late			
QP Propiconaz	ole 2.0 FL OZ/M	Late			
29 QP 642	11.75 FL OZ/M	Late	2.5 st	6.5 a-e	0.598 b-o
30 QP Chlorothalo	nil 2.66 FL OZ/M	Late	1.3 t	6.8 a-d	0.630 a-j
QP lpro	4.0 FL OZ/M	Late			
QP Tebuconazo	ole 0.69 FL OZ/M	Late			
31 QP Chlorothalo	nil 4.76 FL OZ/M	Late	3.0 st	6.0 b-t	0.605 b-o
QP Ipro	2.23 FL OZ/M	Late			
QP Fludioxonil	0.36 FL OZ/M	Late	07.5	0.5.1	0.470 D
32 GWN-9803	0.5 FL OZ/M	Early/Late	67.5 C-I	2.5 K-N	0.479 v-B
GVVIN-6526	0.25% VV	Early/Late			0 477 0
33 GWN-9803	1.0 FL 02/M	Early/Late	63.8 G-J	2.8 K-N	0.477 W-C
GWN-6526	0.25% VV	Early/Late	70 5 6 7	0.01.5	0.450
34 GWN-9803		Early/Late	70.5 a-g	2.3 1-0	0.453 X-C
GWIN-0320		Eally/Late	75.0.0.0	2.0 mpg	0.410 PC
36 NB37440	0.4 T L OZ/M		35.0 L-p	2.0 mino 4.3 hii	0.419 BC
37 NB36137	0.02 TE 02/W	Late	47.5 h-m	4.5 mj	0.505 t-7
38 NB36137	0.45 OZ/M	Late	82.5 a-d	2.0 mno	0.305 t-2
39 NB36693	1.2 OZ/M	Late	82.3 a-d	2.0 mno	0.446 v-C
40 NB36693	2.4 OZ/M	Late	72.5 a-f	2.3 1-0	0.457 x-C
41 Civitas		Late	18.8 o-t	5.0 f-i	0.643 a-h
Mix		Late		0.0	
1		Late			
		Late			
42 Civitas		Early	32.5 l-q	4.5 g-j	0.586 f-g
Mix		Late		0,7	
2		Late			
43 Civitas		Early	8.8 rst	5.8 c-g	0.643 a-h
Mix		Late		-	
3		Late			
		Late			
44 Civitas		Late	7.5 rst	5.5 d-h	0.658 abc
Mix		Late			
4		Late			
Means followed by s	same letter do not signi	ficantly differ (P=.0	5, Waller-Duncan)		
^a Early and late fungi	cide treatments were a	pplied on Oct 19th	, 2010 and Nov. 23rd,	2010, respectively	
^b Mean % diseased a	area				
^c Quality was rated o	on a scale of 1-9 where	1 = completely dea	ad, 6 = acceptable. 9	= dark green	
^d Color was rated usi	ng a GreenSeeker ND\	/I Turf Color Meter	from Ntech Industries	®	

Snow Mold, Quality, and Color Ratings Recorded on April 10th, 2011 at Sentryworld GC

Treatment	Rate	Timing ^a	Dis severity ^b	Quality ^c	Color ^d
45 Civitas		Late	1.3 t	7.0 abc	0.652 a-e
Mix		Late			
5		Late			
		Late			
46 Civitas		Late	20.0 o-t	5.5 d-h	0.606 b-n
MIX		Late			
6		Late			
47 Civitor Mix		Late	80.0.0.0	2210	0 497 0
		Late	00.0 a-e	2.3 1-0	0.407 U-A
18 Civitas Mix			75 0 2-0	28 k-n	0 568 i-t
8		Late	70.0 d-C	2.0 KH	0.000 j-t
49 Civitas		Early	6.3 st	6.8.a-d	0.590 d-n
Mix		Late	0.0 01	0.0 4 4	0.000 u p
9		Late			
		Late			
		Late			
50 Civitas		Early	11.3 q-t	5.5 d-h	0.629 a-j
Mix		Late			,
10		Late			
		Late			
51 Civitas		Late	10.0 rst	6.3 a-f	0.654 a-d
Mix		Late			
11		Late			
52 Civitas		Late	2.5 st	6.5 a-e	0.660 ab
Mix		Late			
12		Late			
53 Civitas		Late	0.0 t	7.0 abc	0.649 a-f
Mix		Late			
13		Late			
54 Civitas		Late	1.8 st	6.8 a-d	0.647 a-g
Mix		Late			
14		Late			
55 Civitas		Late	0.0 t	7.5 a	0.679 a
Mix		Late			
15		Late		4.0	0.404.450
56 1367-A	12.0 FL OZ/M	Early/Late	91.3 ab	1.0 0	0.431 ABC
57 1367-A	24.0 FL OZ/M	Early/Late	92.5 a	1.00	0.452 y-C
50 1007-B		Early/Late		2.5 K-II	0.507 T-y
60 1367-C		Early/Late	90.0 ab	1.00 28km	0.452 y-C
61 1367-C		Early/Late	70.5 a-y	2.0 K-II	0.443 2-0
62 1367-D	60 EL 07/M	Early/Late	58 5 o k	2.0 m	0.472 W-0
63 1367-D	12.0 FL OZ/M	Early/Late	46 0 i₋n	3.3 j-m	0.525 q-w
Means followed by some	letter do not signific	antly differ (D- 0	5 Waller-Duncan)	5.5 j-III	0.321 1-00
^a Early and late fungicide	treatments were apr	lied on Oct 19th	n. 2010 and Nov 23rd	2010, respectively	

^bMean % diseased area

^cQuality was rated on a scale of 1-9 where 1 = completely dead, 6 = acceptable, 9 = dark green

^dColor was rated using a GreenSeeker NDVI Turf Color Meter from Ntech Industries®

Treatment	Rate	Timing ^a	Dis severity ^b	Quality ^c	Color ^d
64 Instrata	5.0 FL OZ/M	Late	8.0 rst	5.8 c-g	0.580 r-w
65 Instrata	7.0 FL OZ/M	Late	0.5 t	6.8 a-d	0.606 b-n
66 Instrata	9.0 FL OZ/M	Late	3.8 st	6.3 a-f	0.603 b-o
67 Instrata	9.3 FL OZ/M	Late	0.0 t	6.8 a-d	0.585 g-q
68 Instrata	5.5 FL OZ/M	Early/Late	1.3 t	6.8 a-d	0.620 a-k
69 Concert	5.0 FL OZ/M	Late	17.5 o-t	5.0 f-i	0.588 e-q
Renown	2.5 FL OZ/M	Late			
70 Concert	8.5 FL OZ/M	Late	6.3 st	6.0 b-f	0.585 g-q
Banner MAXX	1.0 FL OZ/M	Late			
71 Concert	8.5 FL OZ/M	Late	0.0 t	6.8 a-d	0.617 a-k
Medallion	0.25 OZ/M	Late			
72 Concert	8.5 FL OZ/M	Late	3.8 st	6.3 a-f	0.626 a-k
Chipco 26GT	4.0 FL OZ/M	Early			
73 Concert	8.5 FL OZ/M	Late	4.3 st	6.0 b-f	0.587 f-q
74 Headway G	4.0 LB/M	Late	76.3 a-e	1.8 no	0.474 w-C
81 Torque	0.6 FL OZ/M	Late	2.5 st	6.5 a-e	0.614 b-k
26/36	4.0 FL OZ/M	Late			
82 Torque	0.9 FL OZ/M	Late	0.0 t	7.0 abc	0.618 a-k
26/36	4.0 FL OZ/M	Late			
83 Torque	0.6 FL OZ/M	Late	1.8 st	6.5 a-e	0.615 b-k
26/36	4.0 FL OZ/M	Late			
Spectro	3.67 FL OZ/M	Late			
84 Torque	0.9 FL OZ/M	Late	0.0 t	7.0 abc	0.608 b-n
26/36	4.00 FL OZ/M	Late			
Spectro	3.7 OZ/M	Late			
85 Torque	0.6 FL OZ/M	Late	0.0 t	7.3 abc	0.636 a-i
Affirm	0.9 FL OZ/M	Late			
86 Torque	0.6 FL OZ/M	Late	0.0 t	7.0 abc	0.605 b-n
Affirm	0.9 FL OZ/M	Late			
Spectro	3.7 OZ/M	Late			
87 Chipco 26GT	4.0 FL OZ/M	Late	28.8 m-r	4.5 g-j	0.564 k-t
Daconil Wstik	5.5 FL OZ/M	Late			
88 Endorse	4.0 OZ/M	Late	61.3 d-j	3.3 j-m	0.548 m-u
89 Segway	0.75 FL OZ/M	Late	76.3 a-e	2.0 mno	0.419 BC
90 Endorse	3.0 OZ/M	Late	50.0 g-m	3.5 jkl	0.544 n-u
Segway	0.45 FL OZ/M	Late	-	-	
Means followed by sam	ne letter do not signific	antly differ (P=.0)5, Waller-Duncan)		
^a Early and late fungicid	le treatments were app	olied on Oct. 19t	h, 2010 and Nov. 23rd,	2010, respectively	

Snow Mold, Quality, and Color Ratings Recorded on April 10th, 2011 at Sentryworld GC

^aEarly and late fungicide treatments were applied on Oct. 19th, 2010 and Nov. 23rd, 2010, respectively ^bMean % diseased area

^cQuality was rated on a scale of 1-9 where 1 = completely dead, 6 = acceptable, 9 = dark green ^dColor was rated using a GreenSeeker NDVI Turf Color Meter from Ntech Industries®

O.J. Noer Turfgrass Research and Education Facility 2502 County Highway M Verona, WI 53593

Phone: (608) 845-2535 Fax: (608) 845-8162 Email: plkoch@wisc.edu Website:http://tdl.wisc.edu

What's Your Irrigation Distribution Uniformity?

By Dr. Doug Soldat, Department of Soil Science, University of Wisconsin - Madison

Michael Voigt reminds us of the importance of irrigation audits in the June 2011 issue of *Golf Course Management* (You Can't Manage What You Don't Measure). An irrigation audit primarily involves measuring the distribution uniformity (DU) and then acting on the results to improve the DU and saving money, decreasing water use, and improving turf quality all at once.

Irrigation DU is quantified by placing flat-bottomed,

straight-sided water collection containers at regular intervals (every 6-10 ft.) on an irrigated area (putting green, tee complex, section of fairway, etc.). The irrigation is run for a set time and the amount of water in the collection vessels is measured. The DU is calculated by simply taking the average of the lowest 25% of the readings and dividing by the overall average. A simple example is shown below. Ideally, you'll have many more than eight measurements.

Each Collection Conta	iner Has A Water Amount.	
1. 0.20 inches		
2. 0.26 inches	Distribution Uniformity Formula	
3. 0.28 inches		
4. 0.33 inches	Average of lowest 25% = 0.23 inches	
5. 0.33 inches	Overall average $= 0.374$ inches	
6. 0.42 inches	Overall average = 0.374 menes	
7. 0.54 inches	Distribution uniformity (DU) = 0.23 ÷ 0.374 = 0.615 or 61.5%	
8. 0.63 inches		

A DU of 80 is considered about as good as it gets, and anything below 60 is generally frowned upon for golf turf. The DU is used to adjust run times, as more irrigation needs to be applied to the entire area to make sure the lowest 25% doesn't get too dry. This obviously

means that the other 75% is over-irrigated to compensate for the lowest 25%. While this makes perfect sense on paper, there is usually more than meets the eye.

Recently at the O.J. Noer Facility, we learned that striving for a high DU is too simplistic at best, and can even do more harm than good in certain situations. We built a USGA-style sand green with a 1% surface slope in 2008. After a while, we noticed that the downslope side was constantly wetter than the upslope areas and finally mapped it with our GPS-equipped soil moisture probe (See Figure 1) in June of this year.

In fact, on the day in June when we made the map in Figure 1, the upslope moisture was around 15% while the downslope moisture was around 35%. Next, we tested the DU and found that it was 80%. So despite nearly perfect irrigation coverage the moisture uniformity in the soil was horrible.

brucecompany.com

Middleton 608.836.7041 Milwaukee 414.778.1112 • Racine 262.639.9029

SERVICES:

- Golf Course Construction
- Landscape Design & Construction
- Landscape Maintenance
- Ponds
- Irrigation
- Locally Grown Wholesale Nursery
- Compost
- Snow Removal

WISCONSIN SOILS REPORT

MAIN	FILE MAP	HE			
Map Name File Name	B6 DU June 17 DU.txt	Sensor Model Sensor Type	TD So	R 300 il Moisture	
⁶⁶ T	ХВ	Color Legend			Count
		14.9	to	18.1	11
I		18.1	to	21.3	26
49 +		21.3	to	24.5	19
X		24.5	to	27.7	3
		27.7	to	30.9	5
33 f		30.9	to	34.1	2
		34.1	to	37.3	6
2000		37.3	to	40.5	4
¹⁶		Units of measurement	are in 'Sta	andard VWC'	
	P	Uploaded on 17/Jun/20	11		
•	D	Uploaded on 17/Jun/20	11		

Figure 1. Soil moisture content of a USGA green with a 1% slope that slopes from "D" to "B". The letters are approximate locations of the irrigation heads and the yellow lines approximate their throw pattern. The "B" end was constantly wetter than the "D" side, despite nearly perfect irrigation distribution uniformity. This map was created with our GPS-enabled soil moisture probe and online mapping software.

Coming Events!

Fri Oct 7th and Sat Oct 8th - WGCSA Couples Weekend @ Minocqua CC, Minocqua, WI (w/NGLGCSA)

Monday October 3rd - WTA Fundraiser @ Oconomowoc GC, Oconomowoc, WI

Tuesday October 25th - WGCSA Assistants Fall Wrap Up Meeting @ OJ Noer Research Facility, Madison

Tues Nov 15th & Wed Nov 16th - WGCSA Golf Turf Symposium @ American Club, Kohler

LEADING TURF BRANDS, LOCAL EXPERTISE

We Make Sure the Grass is Always Greener on **Your** Side.

We combine the world's leading professional turf maintenance brands with a team of local experts to deliver the best overall turf solutions to our customers. From creating customized solutions designed to tackle site specific issues to building customer specific application programs that achieve maximum results, our customer-driven, expert staff is dedicated to the overall success of each and every customer.

Rep: BRUCE SCHWEIGER 608-359-5399 | bschweiger@midwestturfproducts.com

Rep: ED DEVINGER 414-801-2302 | devinger@att.net

www.midwestturfproducts.com

WISCONSIN SOILS REPORT

So, we made an adjustment and capped off the irrigation head at the downslope side. We came back about a month later, measured the soil moisture and measured the irrigation DU with only three heads operating (See Figure 2). The DU was now only 12%, but the moisture content of the soil was visibly more uniform. Interestingly, the wettest point on the green remained the downslope area nearest the head that was capped off. This is likely because of rainfall events, and subsurface flow/drainage from the higher points in the soil to the lower spots.

Figure 2. Soil moisture content of the same putting green shown in Figure 1 with the irrigation head at point "C" turned off for a month (downslope side). The irrigation DU was ridiculously low by any standard, yet the soil moisture distribution is visibly more uniform than shown in Figure 1. Interestingly, the wettest point on the green is nearest to the head that was turned off. This is because of rainfall and also subsurface drainage from higher points of the green.

Clearly, irrigation DU is only a tiny piece of the water management puzzle. By ignoring the actual water content patterns in the soil, achieving a high DU is a meaningless activity. In fact, in this example the turf manager should be striving towards a lower DU, as a means to improve the moisture distribution of the green. Soils are not flat, uniform bodies. They are highly varied and have different drainage rates, particle distributions, and slopes, among other things. Remember, you are growing plants in the soil and the goal should be to have even moisture distribution in the soil, not necessarily coming out of the irrigation heads.