# EVALUATING THE TREE POPULATION OF A GOLF COURSE

By Jeffrey Parks Golf Course Superintendent David Helke Assistant Golf Course Superintendent Lake Arrowhead Golf Course

Nearly everone is aware that trees play a role on the golf course. To the casual observer, the greenery and texture of trees provide a pleasant contrast to the stark concrete and bustling streets of the city. To the golfer, who finds his ball snuggled against the buttress root of a forty-foot silver maple, with three feet of solid timber between his dimpled orb and the green, trees possess an entirely different significance.

So it is accepted that trees play a role and, therefore, have some value. But, for all of their redeeming qualities, the values of trees have always been defined in intangible terms like sturdy, rugged, graceful, bigger than yours, etc. In 1947, the National Shade Tree Conference (presently the International Shade Tree Conference), together with the National Arborist Association, moved to develop a systematic method of evaluating trees in their landscape setting. The Shade Tree Evaluation Committee was formed. Their task was to place a monetary value on trees.

Ten years were spent studying the problem. Finally, in 1957, the committee published a booklet entitled "Shade Tree Evaluation." The booklet described a method which divided the value of a tree into three basic components:

- 1. the size of the tree (i.e., the cross-sectional area)
- 2. the type of tree genus, species, variety
- 3. the general condition of the tree

Each of the above factors has a value assigned to it. They will be described in more detail later.

Our involvement with this method began in an effort to evaluate the plantings at Blackhawk Country Club. The reasons that prompted the evaluation were these:

- 1. to create an inventory of the trees, both natural and planted, on the course
- 2. to make a map showing the location of each tree and devise a key which uniquely associated each tree to its location on the map — the map would also demonstrate the species distribution of the trees on the course
- 3. to calculate the replacement value of the trees

# Making the Map:

Before any calculations regarding the value of the trees could be made, a map had to be drawn showing the position of each tree. Fortunately, air photos had been taken of Blackhawk within the past five years as a prelude to some construction work on the course. The photos had been enlarged and made into contour maps showing the entire course. Unfortunately, while the map showed the larger trees fairly clearly, very few of the younger trees could be seen. The new plantings, as well as those trees that had been removed recently, had to be drawn on, or excluded from, the map.

Drawing the new plantings on the map proved to be a long, arduous process. Using the larger trees as reference points, we would find two trees that a smaller tree lay between. A line was drawn between the two reference trees. The same thing was done using two other trees from a different direction. The intersection of the lines pinpointed the location of the smaller tree. This method was an expedient as any we tried, yet accurate to allow anyone to take the map into the field and find whatever tree he might be looking for.

Once the trees were drawn in, we traced the map to eliminate some of the background confusion (buildings, contour lines, etc.). A grid system was then drawn on this tracing. The grid was typical of those found on most road maps. It was necessary to subdivide the course in this way so that when the key (a listing of all the trees, their identity, condition, and value) was made, finding a tree and all the pertinent information about it would be easier.

The next step was to take the

tracing to a blueprinting company where we had blueline copies of the map made. These copies were to be used in the field when we started the identification and measuring phase of our project. We walked the course again, stopping at each tree, measuring it, identifying it down to the species level, assigning it a number in the key, evaluating its condition and noting its position on the map. When we were finished, we had found over forty different species of trees and had catalogued thirty pages of notes.

# Using the Shade Tree Evaluation Method:

In the first few paragraphs of this report, a brief description was given of the evaluation method we used to determine the value of the trees at Blackhawk Country Club. In this section we will present a more detailed account of the process, as well as some of the problems we encountered while using it.

As was mentioned earlier, the value of a tree was subdivided into three components: size, types and condition.

- Size. The size is represented by the cross-sectional area of the trunk at breast height (4 1/2 feet above the base).
  - a) for large trees, where it is easier to measure the circumference (c), the forumla: Area = 0.0796 c<sup>2</sup> should be used.
  - b) for smaller trees, where it is possible to measure the diameter (d) with a caliper, the forumla: Area = 0.7854 d<sup>2</sup> should be used.

The National Shade Tree Conference adopted a price of \$6.00 per square inch of cross-section as a conservative, yet reasonable value for the size component of a tree. So, once the area is calculated, it is simply multiplied by the six dollar figure to obtain the size value.

However, when we started to calculate the size value of the smaller trees, we discovered a problem, as illustrated in the following graph.

Line CV, in the above graph, represents the calculated value (CV) of trees using the Shade Tree Evaluation Method. One can see



that between points a and b, the calculated value is less than the nursery value (NV). But the calculated value continues to escalate with each increase in the diameter of the tree. On the other hand, the nursery value is subject to market pressures. As the tree grows larger, the market for it decreases and therefore its value plateaus until, at some point, it literally grows out of any market and its value plummets. At some theoretical point, b, lines CV and NV will intersect. After that point, the calculated value is going to be greater than the nursery value. With the prices of the trees leapfrogging each other in this way, the dilemma of which value is the more accurate arises.

We settled on this solution. The committee report suggests that where an exact replacement value can be obtained for a tree, this is the value that should be assigned to the tree. To get this information we used the 1979 prices found in the Charles Fiore Nurseries catalogue.1/ For those trees that were clearly too large to be carried on a nursery's inventory, we used the calculated value. This still left us with one troublesome group of trees. The trees in this group lay somewhere in the area represented by the dashed circle on the graph. The sizes of the trees were such that they were larger than those listed in the nursery catalogue but in part of the circle, the calculated value is less than the nursery value. To solve this problem, we extrapolated the

<sup>1/</sup>Charles Fiore Nursery; Season Wholesale; Prairie View, Illinois (60069) nursery prices to fit the size of the tree, than calculated the value using the Shade Tree Evaluation method, and assigned whichever value was greater to the tree.

- 2. Type. The Shade Tree Evaluation Committee spent a great deal of time classifying trees regarding their value within geographic-climatic boundaries. The boundaries were necessary because trees perform differently in different parts of the country. The committee report lists the genus and species of the trees under one of five groups. The groups range from 100% to 20%. The most preferred trees within a region would naturally be placed in the 100% group; the poorest in the 20% group. While the lists of trees in each region are quite extensive, we did find trees on the course that weren't rated in our particular region. In these cases we borrowed the ratings from neighboring regions.
- Condition. This component of the evaluation was dependent to a great extent on the judgment of the evaluator. The National Shade Tree Conference suggests that the image of a perfect specimen be kept in mind while evaluating the subject tree. By comparing the tree with this mental image, the evaluator assigns a relative percent value to the tree.

The report goes on to say that flexibility is important to the assessment. If the subject tree has some remarkable quality or its position in the landscape is significant, then the value of the speciment may be of more value than the perfect specimen. In our evaluation, we assigned a value of 100% to a perfect specimen and, because a tree can play an important role in how a hole will be played, we added on a percentage factor that reflected the tree's influence on the hole.

Other problems:

- 1. Multiple trunked trees. How do you measure them? We measured the diameter at breast height of each trunk and added the diameters together.
- 2. Small conifers and deciduous trees. All conifers and those deciduous trees with a diameter of less than one inch are listed by height in nursery catalogues. This meant one more trip out on the course to measure the heights of the trees that fell into this size category.

### A Sample Calculation:

As was mentioned earlier, the values for smaller trees were obtained directly from the Charles Fiore Nursery catalogue. The nursery value was multiplied by the condition factor to reflect the tree's overall health.

Calculating the value for the larger trees was a simple matter of plugging the numbers for each of the components into this formula:

Value = \$6.00(area in <sup>2</sup>) (type%) (condition%)

So, for a burr oak, with a 9'3" circumference and a condition rated at 130%, the value would be:

Area =  $.0796 c^2 = .0796(111 in^2)$ = 980.75 in<sup>2</sup>

Value = \$6.00(980.75 in<sup>2</sup>) (100%) (130%)

= \$7,650

# A Few Words About the Key:

The key has been referred to several times in this report without any real explanation of what it is or how it works. The twelve pages of numbers that appear at the end of the report, like something out of an accountant's nightmare, constitute the key. It works like this. Suppose that you discover late in December that one of your white fir trees has been sawed off at the base (and is presumably decking

someone's halls with a lot of fa la la la la). For insurance purposes, you have to submit an estimate of the tree's value. To do this you then go to you map and locate the tree. The tree will lie within one of the squares on the grid that was described earlier. Each square is identified by a letter on the vertical axis of the map and a number on the horizontal axis. Assume that the square is F12. Now you turn to the key and find the trees listed under F12. There you should find the code number - F12WF. (WF = white fir: abbreviations for all types of trees are listed in Table 1. preceding the key). Behind the code number will be listed the type rating, the size, the condition rating, and the value of the tree.

#### Summary:

While we found that the Shade Tree Evaluation method was not devoid of weaknesses, we also discovered that it was a workable system, capable of transforming the intangible qualities of trees into more concrete terms-money.

Editor's Note: The authors completed this project as a part of the requirements for a Coordinative Internship project at the University of Wisconsin — Madison CALS Turf Management Program. The total value of the trees on the golf course exceeded \$1.5 million.

#### Table 1. Tree Abbreviations

| Symbol .   | Common Name           | Scientific Name                   |
|------------|-----------------------|-----------------------------------|
| A          | Alder                 | Alnus glutinosa                   |
| AL         | American Linden       | Tilia americana                   |
| AP         | Austrian Pine         | Pinus nigra                       |
| ARB        | Arbor Vitae           | Thuja occidentalis                |
| BE         | Box Elder             | Acer negundo                      |
| BHS        | Black Hills Spruce    | Picea glauca densata              |
| BL         | Black Locust          | Robinia pseudoacacia              |
| <b>BLO</b> | Black Oak             | Quercus velutina                  |
| BO         | Burr Oak              | Quercus macrocarpa                |
| С          | Catalpa               | Catalpa speciosa                  |
| CA         | Crab Apple            | Malus spp.                        |
| CBS        | Colorado Blue Spruce  | Picea pungens glauca              |
| CGS        | Colorado Green Spruce | Picea pungens viridis             |
| CH         | Common Horsechestnut  | Aesculus hippocastanum            |
| CO         | Chestnut Oak          | Ouercus prinus                    |
| CsH        | Cockspur Hawthorne    | Crataegus crusgalli               |
| DF         | Douglas Fir           | Pseudotsuga menziesii             |
| E          | Elm                   | Ulmus americana                   |
| GA         | Green Ash             | Fraxinus pennsylvanica            |
| GL         | Honeylocust           | Gleditsia triacanthos             |
| GsL        | Greenspire Lindon     | Tilia cordata 'Greenspire'        |
| НЬ         | Hackberry             | Celtis occidentalis               |
| I.         | Larch                 | Larix decidua                     |
| LLL        | Littleleaf Linden     | Tilla cordata                     |
| MA         | European Mountainach  | Sorbus aucuparta                  |
| MI         | Mounthatten Juniper   | Juniperus chinensis 'Mounthatten' |
| NM         | Norway Manle          | Acer platanoides                  |
| NS         | Norway Spruce         | Picea abies                       |
| P          | American Plum         | Prunus americana                  |
| PR         | Paper Birch           | Betula papyrifera                 |
| PO         | Pin Oak               | Ouercus palustris                 |
| Pop        | Poplar                | Populue enn                       |
| PB         | Piver Birch           | Betula niera                      |
| RAT        | Redmond Linden        | Tilia euchlora 'Redmond'          |
| PO         | Red Oak               | Quercue rubra                     |
| PD         | Red Dak               | Pinue recipces                    |
| ShCI       | Sunhurst Vonavlocust  | Claditeis triscanthos 'Cunhurst'  |
| CU         | Shachark Hickory      | Carva ovata                       |
| SIM        | Silver Manle          | Acer eacharinum                   |
| CM         | Silver Maple          | Acer saccharum                    |
| CD         | Sugar hapie           | Rinus evivostris                  |
| DF UA      | Scotch rine           | Finds Sylvestils                  |
| WA         | White Coder           | Tuninerus uirginiana glauss       |
| WC UP      | White Cedar           | Abias concolor                    |
| WI.        | White fit             | Quereus alba                      |
| WO         | white Oak             | Quercus alba                      |
| WIP        | white Pine            | rinus strobus                     |

#### RANDOM SAMPLE PAGES FROM EVALUATION

| Location           | Class   | Cond.   | Size*      | Cost     | Location  | Class | Cond. | Size          | Cost   | Location | Class | Cond. | Size      | Cost   | Location  | Class | Cond | . <u>Size</u> | Cost  |
|--------------------|---------|---------|------------|----------|-----------|-------|-------|---------------|--------|----------|-------|-------|-----------|--------|-----------|-------|------|---------------|-------|
| 12 RO              | 100     | 100     | 7*4"C      | \$2900   | C2 DF     | 80    | 95    | 2.5"D         | \$ 208 | Group L  |       |       |           |        | Group N ( | cont) |      |               |       |
| AB2-3 WO           | 100     | 120     | 7"4"C      | 3487     | C3 CG5    | 80    | 100   | 75"0          | 20     | RO       | 100   | 140   | 7'8"C     | \$5659 | BO        | 100   | 150  | 515"0         | \$302 |
| A4 ARB             | 100     | 80      | 3.5'HT     | 30       | C3 BHS.   | 80    | 100   | 75"D          | 27     | RO       | 100   | 140   | 6'8"C     | 4279   | BO        | 100   | 150  | 4'4"0         | 193   |
|                    |         |         |            |          | C3 BHSa   | 80    | 100   | 75"D          | 27     | RO       | 100   | 140   | 6'7"C     | 4173   | BO        | 100   | 150  | 8'7"C         | 760   |
| A9 E               | 80      | 100     | 4°C        | 880      | C3 WC     | 100   | 90    | 4'10"+3'7"C   | 4385   | WO       | 100   | 140   | 4'7"C     | 2023   | BO        | 100   | 150  | 6'4"C         | 413   |
| A9 AL3             | 40      | 100     | 3.1.C      | 262      |           | ****  |       | 4 10 45 7 0   | 4303   | WO       | 100   | 140   | 6'7"C     | 4173   | BO        | 100   | 150  | 3'8"C         | 138   |
| AB9 AL2            | 40      | 110     | 7"6"C      | 1702     | C4 CA     | 100   | 100   | 2.25+2.50D    | 106    | WO       | 100   | 140   | 5'4"C     | 2739   | RO        | 100   | 150  | 3'3"C         | 109   |
| AB9 AL1            | 40      | 110     | 6"8"C      | 1345     | C4-5 CA   | 100   | 100   | 3.5+1.75D     | 130    | WO       | 100   | 140   | 4'1"C     | 1605   | RO        | 100   | 150  | 4'7"C         | 216   |
| AlO SiM2           | 20      | 70      | 4"4"C      | 181      | C4 NM     | 100   | 100   | 2.5"D         | 29     | WO       | 100   | 140   | 5'2"C     | 2570   | RO        | 100   | 150  | 5'8"C         | 331   |
| AB10 SIM           | 20      | 100     | 6"7"C      | 596      | C5 CA     | 100   | 100   | 1"D           | 16     | W0       | 100   | 140   | 4'6"C     | 1950   | RO        | 100   | 150  | 4'2"C         | 179   |
|                    |         |         |            |          | C5 GAc    | 80    | 90    | 1 75"0        | 60     | WO       | 100   | 140   | 5'4"C     | 2739   | BO        | 100   | 150  | 4'11"+3'3"C   | 688   |
| BZ NM1             | 100     | 90      | 4 6"C      | 1253     | C5 GAr    | 80    | 100   | 6.25"D        | 147    | WO       | 100   | 140   | 4'9"C     | 2172   | BO        | 100   | 150  | 3'C           | 194   |
| BZ NM2             | 100     | 90      | 3'9"C      | 870      | CS CAT    | 80    | 100   | 5 5"D         | 114    | 110      | 100   | 140   | 6'4"C     | 3862   | BO        | 100   | 150  | 513"0         | 284   |
| BZ NM3             | 100     | 100     | 3'5"C      | 803      | C5 NM     | 100   | 100   | 75"D          | 29     | NO       | 100   | 140   | 6'3"C     | 3761   | BO        | 100   | 150  | 4'C           | 165   |
| B3 SH1             | 80      | 100     | 314"0      | 611      | CDS-6 CA  | 100   | 100   | 75 0          | 16     | 110      | 100   | 140   | 6'8"C     | 6279   | RO        | 100   | 150  | 415"0         | 201   |
| B3 SH2             | 80      | 100     | 313"C      | 581      | CS CA     | 80    | 100   | 110"C         | 160    | PO       | 100   | 140   | 7'9"C     | 5783   | BO        | 100   | 150  | 3'4"C         | 240   |
| B3 SM              | 100     | 90      | 1 5"D      | 50       | CS CAR    | 80    | 100   | 21010         | 776    | PO       | 100   | 140   | 7110"0    | 5908   | BO        | 100   | 150  | 210           | 61    |
| B3 RO              | 100     | 100     | 75"D       | 36       | CS CAL    | 80    | 100   | 3.9.6         | 1000   | RO       | 100   | 140   | 610"0     | 6397   | BO        | 100   | 150  | 110"0         | 21    |
| B3 GA              | 80      | 100     | 1 6"D      | 60       | CS GA2    | 80    | 100   | 4.2.6         | 1285   | RO       | 100   | 140   | 613"0     | 3761   | BO        | 100   | 150  | 215"0         | 120   |
| 83-4 WA            | 80      | 100     | 2"0        | 95       | CS GR3    | 80    | 100   | 3.1.0         | 106    | WO       | 100   | 140   | ELENC     | 3701   | 00        | 100   | 150  | 31010         | 203   |
| 00-4 HA            | 00      | 100     | 2 0        | 0.5      | CD6 SiM   | 20    | 100 4 | 19"+4'5"+5'4' | C 2892 | WU       | 100   | 140   | 550       | 2023   | bu        | 100   | 150  | 590           | 303   |
| B4 ARB             | 100     | 90      | 6'HT       | 40       | C6 GA1    | 80    | 100   | 4'10"C        | 1285   | PO       | 100   | 140   | 6.7.6     | 41/3   | BO        | 100   | 150  | 5.4 6         | 293   |
| B4 WA1             | 80      | 70      | 1.5"D      | 75       | C6 GA2    | 80    | 90    | 3'4"C         | 550    | PO       | 100   | 140   | 6.7.6     | 41/3   | BO        | 100   | 150  | 7.0           | 505   |
| B4 WA2             | 80      | 100     | 1.6"D      | 75       |           |       |       |               |        | PO       | 100   | 140   | / 11-0    | 6034   | PB        | 100   | 110  | 10.81         | 10    |
| B4 GA1             | 80      | 100     | 1.75"D     | 70       | C8 SRC    | 100   | 100   | 1.25"D        | 40     | E        | 80    | 140   | 3.4.C     | 1182   | DF        | 100   | 110  | 11.HL         | 1/    |
| B4 RO              | 100     | 100     | .75"D      | 36       | C8 C 1    | 100   | 100   | 1.25"D        | 40     | RMb      | 20    | 140   | 2'7"C     | 92     | RO        | 100   | 110  | 6'4"C         | 303   |
| B4 GA2             | 80      | 90      | 1.75"D     | 70       | C8 C 2    | 100   | 100   | .75D          | 40     |          |       |       |           |        | во        | 100   | 110  | 4.11.C        | 182   |
| BC4 CA             | 100     | 100     | 2.5"+3"D   | 143      | C8 ARB    | 100   | 100   | 8'HT          | 56     | Group M  |       |       |           |        | во        | 100   | 110  | 4'11"+3'5"C   | 525   |
|                    |         |         |            |          | C8 C 3    | 100   | 80    | 6.75"D        | 172    |          |       |       |           |        | RO        | 100   | 140  | 7°C           | 471   |
| BC5 GA             | 80      | 80      | 5'HT       | 1100     | C8 GA     | 80    | 100   | 2*5"C         | 321    | BO       | 100   | 120   | 3'4"C     | 917    | RO        | 100   | 140  | 6'9"C         | 417   |
| B8 SIM1            | 20      | 40 8    | '9"+6'5"C  | 1294     | C8 C 4    | 100   | 100   | .75"D         | 40     | BO       | 100   | 120   | 2'11"C    | 1470   | PO        | 100   | 140  | 5'3"C         | 265   |
| B8 C               | 20      | 70      | 3'4"C      | 107      | C8 C 5    | 100   | 100   | .75"D         | 40     | BO       | 100   | 120   | 3'3"C     | 872    | PO        | 100   | 140  | 5"7"C         | 300   |
| B8 S1M2            | 20      | 70      | 5'4"C      | 274      | C8 C 6    | 100   | 100   | 3.6"D         | 61     | BO       | 100   | 120   | 4'1"C     | 1376   | ARB       | 100   | 140  | 25'HT         | 24    |
| B8 S1M2            | 20      | 70      | 8'9"C      | 737      | C8-9 C1   | 20    | 60    | 5'1"C         | 213    | BO       | 100   | 120   | 3'2"C     | 828    | PO        | 100   | 140  | 4"8"C         | 209   |
| BC8 C1             | 20      | 90      | 6'9"C      | 564      | C8-9 C2   | 20    | 130   | 8'10"C        | 1395   | BO       | 100   | 120   | 2'11"C    | 585    | DF        | 80    | 140  | 2"2"C         | 36    |
| BCB Co             | 20      | 100     | 618"0      | 611      | C8 WA1    | 80    | 100   | 8"25"D        | 2570   | BO       | 100   | 120   | 8"D       | 464    | PO        | 100   | 140  | 5'8"C         | 305   |
|                    |         | 100     | 000        | OIL      | C8-9 WA   | 80    | 90    | 2'5"C         | 290    | BO       | 100   | 120   | 4'2"C     | 1433   | PO        | 100   | 140  | 6'9"C         | 438   |
| B9 SiM             | 20      | 120     | 8'11"C     | 2625     | C0 C1     | 00    | 100   | 7110          | 100    | BO       | 100   | 120   | 2'10"C    | 663    | RO        | 100   | 140  | 3'10"C        | 141   |
| B9-10 BO           | 100     | 100     | 5'3"C      | 1896     | CO BUC-   | 80    | 100   | / 0           | 100    | BO       | 100   | 120   | 4'5"+4'C  | 5846   | SH        | 80    | 140  | 4'1"C         | 128   |
| B9 SM1             | 100     | 120     | 4'2"C      | 1433     | C9 BHS1   | 80    | 100   | 4 HI          | 30     | BO       | 100   | 120   | 4'7"C     | 1734   | PO        | 100   | 140  | 6'3"C         | 376   |
| B9 SiM             | 20      | 120     | 7'5"C      | 908      | C9 BhS2   | 00    | 100   | 3.HI          | 27     | BL       | 20    | 120   | 4'4"C     | 1310   | BO        | 100   | 140  | 6'9"C         | 438   |
| B9 SM <sub>2</sub> | 100     | 120     | 5'6"C      | 2497     | C9 CBS    | 80    | 100   | 4 ' HT        | 39     | BO       | 100   | 120   | 4"D       | 232    |           |       |      |               |       |
| B9 SH              | 80      | 120     | 6'1"C      | 2443     | C9 LLL    | 100   | 100   | 6"D           | 170    | BO       | 100   | 120   | 2'8"C     | 587    |           |       |      |               |       |
| B9 AL              | 40      | 120 4   | '8"+5'+8'  | C 5152   | C9 SM     | 100   | 20    | 7'5"C         | 739    | E        | 80    | 120   | 3'C       | 743    | Group O   |       |      |               |       |
| B10 100            | 100     | 100     | -          |          | C9 BE     | 20    | 70    | 7'10"C        | 590    | BL       | 20    | 120   | 3'9"C     | 232    |           |       |      | (Intratette   |       |
| BIO WO             | 100     | 120     | 7.6.C      | 4642     | C9 WA     | 80    | 100   | 3"D           | 95     | BL       | 20    | 120   | 3'9"C     | 232    | SIM       | 20    | 100  | 4 3 + 5 5 +   | 272   |
| BIO SIMI           | 20      | 60      | 7'11"C     | 517      | C10 RM    | 100   | 60    | 6'HT          | 14     |          |       |       |           |        |           |       |      | 4'5'C         |       |
| BIU SIM2           | 20      | 60      | 9.1.C      | 681      |           |       |       | • III         |        | Group N  |       |       |           |        | GA        | 80    | 100  | 4 · 2 "C      | 9:    |
| BIO SH             | 80      | 100     | 4'6"C      | 1114     | D4 E      | 80    | 100   | 3'11"C        | 837    |          |       |       |           |        | AL        | 60    | 100  | 7.2.C         | 211   |
| B10-11 BO          | 100     | 100     | 7'6"C      | 3869     | D4 SM     | 100   | 100   | 1.75"D        | 34     | BO       | 100   | 150   | 9'5"C     | 9148   | AL        | 40    | 100  | 3.10"+3.1"+   | 317   |
| B10 RdL            | 100     | 100     | 2'8"C      | 552      | D4 NM     | 100   | 100   | 3.5"D         | 100    | RO       | 100   | 150   | 4'10"C    | 2410   |           |       | -00  | 3'4"C         |       |
| 811 BO             | 100     | 100     | 516"0      | 2080     | D4 GL     | 100   | 100   | 2.25"D        | 95     | RO       | 100   | 150 4 | 13"+3'9"C | 6603   | AL        | 40    | 100  | 6'2"+3'5"C    | 252   |
|                    | 100     | 100     | 200        | 2000     | D4 SM2    | 100   | 100   | 3.2"C         | 679    | RO       | 100   | 150 4 | 3'4"C     | 1146   | AL        | 40    | 100  | 4'7"+4'6"C    | 226   |
|                    |         | 1       |            |          | -         |       |       |               |        | BO       | 100   | 150   | 5'6"C     | 3121   | AL        | 40    | 100  | 6'5"C         | 113   |
| *circumfer         | ence (C | ), diam | meter (D). | and heig | tht (HT). |       |       |               |        | BO       | 100   | 150   | 2'4"0     | 562    | C         | 20    | 100  | 5'8"C         | 44    |

\*circumference (C), diameter (D), and height (HT).

150 5'6"C 150 2'4"C

20 100 442

185

5'8"C 3'8"C

