Yardage Balance in Design Equalizes Competition

By WILLIAM B. LANGFORD

All golfers know that some courses always wear them out both physically and mentally, even though they are beautifully built and maintained and frequently lauded by scratch players. A round over such courses brings not only exhaustion but also depression.

This is not because of too great overall length, badly built uninteresting holes or failure to use the terrain to eliminate climbing and long walks from green to tee. It is because, in play, one encounters a series of similar holes, on each of which, though you hit to your limit, you are unable to score.

The total length of the course is not the factor causing fatigue and frustration. The 300 or 400 extra yards played do not take the starch out of you but the 30 yards added to many holes, putting them out of range for your best efforts do upset the applecart. It is the distribution of yardage, not the sum total, that gives a disproportionate advantage to brawn and spoils the fun.

Nothing wears a fellow down more in mind and body than repeated failure after herculean effort. A well-balanced course does not present a preponderance of holes where the moderate driver, and I don't mean duffer, cannot score if he is accurate and canny.

A course which is a pushover for one who has only distance at his command can be a nightmare for his shorter driving but much more accurate and versatile opponent. A course that encourages precision and finesse is much better and more enjoyable than one built for power. It is at least as unwise to create a layout heavily favoring the hitter as it is to construct one with no holes where distance pays off.

The shorter player must always make up for his lack of distance by steadiness and accuracy. He is usually out on a limb playing the odd but will not complain about this setup if he feels that he has a reasonable chance to come through.
$\left.\begin{array}{lccc|ccccc}\hline \begin{array}{c}\text { Yard- } \\ \text { age }\end{array} & \text { Par } & \begin{array}{c}\text { COURSE A } \\ \text { Hittor } \\ \text { Hole }\end{array} & \begin{array}{c}\text { Strokes to } \\ \text { reach green }\end{array} & \begin{array}{c}\text { Yard- } \\ \text { By } \\ \text { long } \\ \text { hitter }\end{array} & \text { average }\end{array}\right)$

He may be called a scrambler but he certainly is not a quitter.

The longer driver has an edge on every hole, since he plays shorter and simpler seconds. He should not receive the added advantage of many holes where only a miracle can save Mister Short. Courses should be built to encourage, develop and reward long hitting but they should not negate precision.

To illustrate the effect of balance or length distribution in bringing out the true all round difference between golfers, I submit tables A and B, showing the holes on each of two courses arranged in order of length. These courses are of equal standard yardage and have the same par; neither has any duplication of hole
length. On Course A, a player whose distance limit is 200 yards will have a one stroke disadvantage on the greens of the ten holes checked. On only five holes of course B will he face a like deficiency because of lack of distance ability. Course B is fun for all golfers and a fine all round test; Course A. can only be enjoyed by the power boys.

I hesitate to present the figures similarly shown in the ridiculous courses depicted in tables C and D, but do so as it may bring my point home more forcefully. They are identical over-all length and par courses. On Course C, the 200 yard limit driver never gets there in par strokes but he can make the grade on every hole on Course D:

Yardage	COURSE C .					COURSE D			
	Par	No, strokes to reach green		$\begin{gathered} \text { Distance } \\ \text { per } \\ \text { stroke } \\ \text { Long } \\ \hline \end{gathered}$		Yardage	Par	No. strokes to reach green	$\begin{gathered} \text { Distance } \\ \text { per } \\ \text { stroke } \end{gathered}$
		Short	Long						
450	5	3	2	225 y		560	5	3	186\% $\%$ yds.
450	5	3	2	225	4	560	5	3	186\%/3
450	5	3	2	225	*	560	5	3	186\%/3
450	5	3	2	225	*	560	5	3	186\%/3
450	5	3	2	225	6	560	5	3	1862/3
430	4	3	2	215	"	380	4	2	190 "
430	4	3	2	215	\%	380	4	2	190 "
430	4	3	2	215	\ldots	380	4	2	190 "
430	4	3	2	215	*	380	4	2	190 "
430	4	3	2	215	4	380	4	2	190 "
430	4	3	2	215	\%	380	4	2	190 "
430	4	3	2	215	"	380	4	2	190 -
430	4	3	2	215	"	380	4	2	190 -
430	4	3	2	215	4	380	4	2	190 "
220	3	2	1	220	*	195	3	1	195 "
220	3	2	1	220	"	195	3	1	195 "
220	3	2	1	220	*	195	3	1	195 "
220	3	2	1	220	4	195	3	1	195 "
7000	73					7000	73		

Expert Advises DDT for Crayfish Control

Dr. Horton H. Hobbs, Jr., Smithsonian Institution, Washington 25, D.C., in sending Fred V. Grau, USGA Green section a list of burrowing crayfish likely to be most troublesome on golf courses, advises: "All indications point to the fact that DDT is the most effective control agent. It would certainly do no harm to experiment with this substance. It might be that its effectiveness would make it no more costly in the long run than some of the less expensive poisons."
Fenner A. Chace, Jr., curator, division of marine invertebrates, Smithsonian In-
stitution, in forwarding Hobbs' recommendation to Grau, adds:
"Dr. Hobbs also suggests that we would be very glad to receive specimens of crayfish from various localities in the United States. If any golf course superintendents are interested in obtaining identifications or in adding valuable material to our collections, we would be most grateful for their contributions. The specimens are best preserved in 80% alcohol or 4% formalin (a 10% solution of commercial Formaldehyde). After remaining in either of these solutions for a week or two, the crayfish may be wrapped in damp cloths and sealed in tins for shipping."

